【題目】如圖1,四邊形中,,邊上的中線,過點垂足為,交線段于點,交于點,連接

1)求證:;

2)探索線段之間的數(shù)量關系,并證明你的結論;

3)當等于多少度時,點恰好為中點?

【答案】1)見解析;(2,見解析;(3105°

【解析】

1)根據(jù)等腰直角三角形的性質(zhì)得到∠DCB=DBC=CDM=BDM=45°,DMBC,利用ASA定理證明△ABD≌△NCD;

2)根據(jù)全等三角形的性質(zhì)得到AD=NDAB=NC,證明△FDA≌△FDN,得到AF=FN,結合圖形證明即可;

3)連接ANBN,根據(jù)線段垂直平分線的性質(zhì)、等邊三角形的判定定理得到△ABN是等邊三角形,得到∠BAN=60°,證明△ADN是等腰直角三角形,得到∠DAN=45°,計算即可.

(1) 證明:

(2)

(3):如圖2,連接AN, BN,

CEAB,EAB中點,

∴直線CEAB的垂直平分線,

AN=BN,

AF=FN,AD=DN,

∴直線BDAN的垂直平分線,

AB=NB,

AB=AN= BN,

∴△ABN是等邊三角形,

∴∠BAN=60°,

AD//BC, DMBC,

ADDN,

AD=DN,

∴△ADN是等腰直角三角形 ,

∴∠DAN=45°,

∴∠BAD=60°+45°=105°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】樂樂發(fā)現(xiàn)等腰三角形一腰上的高與另一腰的夾角為40°,則這個等腰三角形底角的度數(shù)為( )

A.50°B.65°C.65°或25°D.50°或40°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在10×10的正方形網(wǎng)格中,每個小正方形的邊長為1個單位長度.△ABC的頂點都在正方形網(wǎng)格的格點上,且通過兩次平移(沿網(wǎng)格線方向作上下或左右平移)后得到△A'B'C',點C的對應點是直線上的格點C'

(1)畫出△A'B'C';

(2)BC上找一點P,使AP平分△ABC的面積;

(3)試在直線l上畫出所有的格點Q,使得由點A'、B'、C'、Q四點圍成的四邊形的面積為9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=ax2+bx+c交x軸于A、B兩點,交y軸于點C,已知拋物線的對稱軸為x=1,B(3,0),C(0,﹣3),

(1)求二次函數(shù)y=ax2+bx+c的解析式;
(2)在拋物線對稱軸上是否存在一點P,使點P到B、C兩點距離之差最大?若存在,求出P點坐標;若不存在,請說明理由;
(3)平行于x軸的一條直線交拋物線于M、N兩點,若以MN為直徑的圓恰好與x軸相切,求此圓的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四張編號為A,B,C,D的卡片(除編號外,其余完全相同)的正面分別寫上如圖所示的正整數(shù)后,背面向上,洗勻放好.

(1)我們知道,滿足a2+b2=c2的三個正整數(shù)a,b,c成為勾股數(shù),嘉嘉從中隨機抽取一張,求抽到的卡片上的數(shù)是勾股數(shù)的概率P1;
(2)琪琪從中隨機抽取一張(不放回),再從剩下的卡片中隨機抽取一張(卡片用A,B,C,D表示).請用列表或畫樹形圖的方法求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率P2 , 并指出她與嘉嘉抽到勾股數(shù)的可能性一樣嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AD平分∠BAC,EG∥AD,找出圖中的等腰三角形,并給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AD=,FDA延長線上一點,GCF上一點,且ACG=AGCGAF=F=20°,則AB=  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為3cm,動點P從B點出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運動,到達A點停止運動;另一動點Q同時從B點出發(fā),以1cm/s的速度沿著邊BA向A點運動,到達A點停止運動.設P點運動時間為x(s),△BPQ的面積為y(cm2),則y關于x的函數(shù)圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,對角線AC,BD相交于點O,點E,F(xiàn)分別在OA,OC上

(1)給出以下條件;①OB=OD,②∠1=∠2,③OE=OF,請你從中選取兩個條件證明△BEO≌△DFO;

(2)在(1)條件中你所選條件的前提下,添加AE=CF,求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

同步練習冊答案