精英家教網 > 初中數學 > 題目詳情

【題目】如圖,將△AB C沿DE,EF翻折,頂點A,B均落在點O處,且EA與EB重合于線段EO,若∠CDO+∠CFO=98°,則∠C的度數為( )

A. 40° B. 41° C. 42° D. 43°

【答案】B

【解析】如圖,連接AO、BO.由折疊的性質可得EA=EB=EO,即可推出∠AOB=90°,∠OAB+∠OBA=90°,由DO=DA,FO=FB,推出∠DAO=∠DOA,∠FOB=∠FBO,推出∠CDO=2∠DAO,∠CFO=2∠FBO,由∠CDO+∠CFO=98°,推出2∠DAO+2∠FBO=98°,推出∠DAO+∠FBO=49°,所以∠CAB+∠CBA=∠DAO+∠OAB+∠OBA+∠FBO=139°,再由三角形的內角和定理可得∠C=180°﹣(∠CAB+∠CBA)=180°﹣139°=41°,故選B.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y= x2﹣mx+n與x軸交于A、B兩點,與y軸交于點C(0,﹣1).且對稱軸x=1.

(1)求出拋物線的解析式及A、B兩點的坐標;
(2)在x軸下方的拋物線上是否存在點D,使四邊形ABDC的面積為3?若存在,求出點D的坐標;若不存在.說明理由(使用圖1);
(3)點Q在y軸上,點P在拋物線上,要使Q、P、A、B為頂點的四邊形是平行四邊形,請求出所有滿足條件的點P的坐標(使用圖2).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD及等邊△ABE.已知∠BAC=30°,EF⊥AB,垂足為F,連接DF

1)試說明AC=EF;

2)求證:四邊形ADFE是平行四邊形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD中,對角線AC,BD相交于點O,點E,F分別在OA,OC上

(1)給出以下條件;①OB=OD,②∠1=∠2,③OE=OF,請你從中選取兩個條件證明△BEO≌△DFO;

(2)在(1)條件中你所選條件的前提下,添加AE=CF,求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】
(1)計算:
(2)解不等式組: ,并寫出該不等式組的最小整數解.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABCD中,點E,F在對角線AC上,且AE=CF.求證:

(1)DE=BF;

(2)四邊形DEBF是平行四邊形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列生活現象中,屬于平移的是( 。

A.足球在草地上跳動

B.急剎車時汽車在地面上滑行

C.投影片的文字經投影轉換到屏幕上

D.鐘擺的擺動

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算題。
(1)計算: .
(2)解不等式:4x+5≤2(x+1).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】將拋物線c1 沿x軸翻折,得到拋物線c2 , 如圖1所示.

(1)請直接寫出拋物線c2的表達式;
(2)現將拋物線c1向左平移m個單位長度,平移后得到新拋物線的頂點為M,與x軸的交點從左到右依次為A、B;將拋物線c2向右也平移m個單位長度,平移后得到新拋物線的頂點為N,與x軸的交點從左到右依次為D、E.
①當B、D是線段AE的三等分點時,求m的值;②在平移過程中,是否存在以點A、N、E、M為頂點的四邊形是矩形的情形?若存在,請求出此時m的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案