【題目】在等邊三角形ABC中,D是邊AC上一點(diǎn),連接BD,將△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC=5,BD=4,有下列結(jié)論:①AE∥BC;②∠ADE=∠BDC;③△BDE是等邊三角形;④△ADE的周長(zhǎng)是9.其中,正確結(jié)論的個(gè)數(shù)是( 。
A. 1B. 2C. 3D. 4
【答案】C
【解析】
由旋轉(zhuǎn)的性質(zhì)和等邊三角形的性質(zhì)易證∠BAE=∠ABC,,即可得AE∥BC,①正確;證明△BDE是等邊三角形,可得 DE=BD=4,所以△AED的周長(zhǎng)=AE+AD+DE=AC+BD=9,可得③④正確.根據(jù)已知條件無(wú)法證明②正確.
∵△ABC為等邊三角形,∴∠ABC=∠C=60°,AC=BC=5.
∵△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,
∴∠BAE=∠C=60°,AE=CD.
∴∠BAE=∠ABC,
∴AE∥BC,所以①正確;
∵△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,
∴∠DBE=60°,BD=BE=4.
∴△BDE為等邊三角形,所以③正確.
∵∠BDC=∠BAC+∠ABD>60°,∠ADE+∠BDC=180°-∠BDE=120°,
∴∠ADE<∠BDC,∴②一定不正確;
∵AE=CD,DE=BD=4,
∴△ADE的周長(zhǎng)=AD+AE+DE=AD+CD+DB=AC+BD=5+4=9,所以④正確.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)的圖象過點(diǎn)和點(diǎn),對(duì)稱軸為直線.
求該二次函數(shù)的關(guān)系式和頂點(diǎn)坐標(biāo);
結(jié)合圖象,解答下列問題:
①當(dāng)時(shí),求函數(shù)的取值范圍.
②當(dāng)時(shí),求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】冬天,小芳給自己家剛剛裝滿水且顯示溫度為的太陽(yáng)能熱水器里的水加熱.她每過一段時(shí)間去觀察一下顯示溫度,并記錄如下:
時(shí)間(分鐘) | 0 | 5 | 10 | 15 | 20 | …… |
顯示溫度() | 16 | 17 | 18 | 19 | 20 | …… |
(1)請(qǐng)直接寫出顯示溫度()與加熱時(shí)間()之間的函數(shù)關(guān)系式;
(2)如果她給熱水器設(shè)定的最高溫度為,問:要加熱多長(zhǎng)時(shí)間才能達(dá)到設(shè)定的最高溫度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩人玩數(shù)字游戲,先由甲寫一個(gè)數(shù),再由乙猜甲寫的數(shù):要求:他們寫和猜的數(shù)字只在,、、,這五個(gè)數(shù)字中:
請(qǐng)用列表法或樹狀圖表示出他們寫和猜的所有情況;
如果他們寫和猜的數(shù)字相同,則稱他們“心靈相通”:求他們“心靈相通”的概率;
如果甲寫的數(shù)字記為,把乙猜的數(shù)字記為,當(dāng)他們寫和猜的數(shù)字滿足,則稱他們“心有靈犀”,求他們“心有靈犀”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在矩形ABCD中,AB=20cm,BC=4cm,點(diǎn)P從點(diǎn)A開始沿折線ABCD以4cm/s的速度運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C開始沿CD邊以1cm/s的速度運(yùn)動(dòng),如果點(diǎn)P,Q分別從點(diǎn)A,C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)點(diǎn)D時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為ts,則t為何值時(shí),四邊形APQD是矩形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中,厘米,厘米,點(diǎn)D為AB的中點(diǎn).如果點(diǎn)P在線段BC上以v厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng).同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).若點(diǎn)Q的運(yùn)動(dòng)速度為3厘米/秒,則當(dāng)與全等時(shí),v的值為______
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)下面圖形,解答問題:
(1)在△ABC中,AB=AC,∠BAC=100°,DE、FG分別是邊AB、AC的垂直平分線(如圖1),求∠DAG的度數(shù)?
(2)在(1)中,若去掉“AB=AC”的條件,其余條件不變(如圖2),還能求出∠DAG的度數(shù)嗎?若能,請(qǐng)求出∠DAG的度數(shù);若不能,請(qǐng)說明理由;
(3)在(圖2)的情況下試探索△ADG的周長(zhǎng)與BC長(zhǎng)的關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰直角△ABC中,∠C=90°,點(diǎn)O是AB的中點(diǎn),且AB=,將一塊直角三角板的直角頂點(diǎn)放在點(diǎn)O處,始終保持該三角板的兩直角邊分別與AB、BC相交,交點(diǎn)分別為D、E,則CD+CE=( )
A.B.C.2D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,直線AB:交y軸于點(diǎn)A(0,1),交x軸于點(diǎn)B.直線x=1交AB于點(diǎn)D,交x軸于點(diǎn)E,P是直線x=1上一動(dòng)點(diǎn),且在點(diǎn)D的上方,設(shè)P(1,n).
(1)求直線AB的解析式和點(diǎn)B的坐標(biāo);
(2)求△ABP的面積(用含n的代數(shù)式表示);
(3)當(dāng)S△ABP=2時(shí),以PB為邊在第一象限作等腰直角三角形BPC,求出點(diǎn)C的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com