【題目】如圖,在等腰ABC中,∠A=36°,ABC=ACB,1=2,3=4,BDCE交于點(diǎn)O,則圖中等腰三角形有( 。

A. 6 B. 7 C. 8 D. 9

【答案】C

【解析】

由已知條件,根據(jù)三角形內(nèi)角和等于180、角的平分線的性質(zhì)求得各個角的度數(shù),然后利用等腰三角形的判定進(jìn)行找尋,注意做到由易到難,不重不漏.

∵在等腰△ABC中,∠A=36°,

∴∠ABC=∠ACB=(180°-36°)/2=72°,

∵∠1=∠2,∠3=∠4,

∴∠1=∠2=∠3=∠4=∠A=36°,

∴AD=BD,AE=EC,OB=OC,即△ADB,△AEC,△OBC是等腰三角形,

∵∠BDC=∠CEB=180°-36°-72°=72°,

∴BC=CE=BD,即△BCE,△BCD是等腰三角形,

∵∠1=∠4=36°,

∴∠BOE=∠COD=180°-36°-72°=72°,

∴OC=CD,BO=BE,即△BOE,△COD是等腰三角形,

∴共有8個等腰三角形.

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC內(nèi)部的一個動點(diǎn),且滿足∠PAB=∠PBC,則線段CP長的最小值為(
A.
B.2
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2 -(m+1)x+2(m-1)=0,

1)求證:無論m取何值時,方程總有實(shí)數(shù)根;

2)若等腰三角形腰長為4,另兩邊恰好是此方程的根,求此三角形的另外兩條邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC、BD相交于點(diǎn)F,點(diǎn)E在BD上,且
(1)試問:∠BAE與∠CAD相等嗎?為什么?
(2)試判斷△ABE與△ACD是否相似?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=2,且拋物線經(jīng)過A(﹣1,0),C(0,﹣5)兩點(diǎn),與x軸交于點(diǎn)B.

(1)若直線y=mx+n經(jīng)過B、C兩點(diǎn),求直線BC和拋物線的解析式;
(2)設(shè)點(diǎn)P為拋物線上的一個動點(diǎn),連接PB、PC,若△BPC是以BC為直角邊的直角三角形,求此時點(diǎn)P的坐標(biāo);
(3)在拋物線上BC段有另一個動點(diǎn)Q,以點(diǎn)Q為圓心作⊙Q,使得⊙Q與直線BC相切,在運(yùn)動的過程中是否存在一個最大⊙Q?若存在,請直接寫出最大⊙Q的半徑;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰ABC中,∠A=80°,B和∠C的平分線相交于點(diǎn)O

(1)連接OA,求∠OAC的度數(shù);

(2)求:∠BOC。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC、BD相交于點(diǎn)F,點(diǎn)E在BD上,且
(1)試問:∠BAE與∠CAD相等嗎?為什么?
(2)試判斷△ABE與△ACD是否相似?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把ABC紙片沿DE折疊,當(dāng)點(diǎn)A落在四邊形BCDE內(nèi)部時,∠A與∠1、2之間的數(shù)量關(guān)系為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在第1ABA1,B=40°,BAA1=∠BA1A,A1B上取一點(diǎn)C延長AA1A2,使得在第2A1CA2,A1CA2=∠A1 A2C;A2C上取一點(diǎn)D延長A1A2A3,使得在第3A2DA3A2DA3=∠A2 A3D;,按此做法進(jìn)行下去3個三角形中以A3為頂點(diǎn)的內(nèi)角的度數(shù)為 ;n個三角形中以An為頂點(diǎn)的內(nèi)角的度數(shù)為

查看答案和解析>>

同步練習(xí)冊答案