【題目】如圖所示,已知∠1+∠2=180°,∠3=∠B,試判斷∠AED與∠C的大小關(guān)系,并對結(jié)論進行說理.
【答案】證明:∵∠1+∠4=180°(鄰補角定義) ∠1+∠2=180°(已知)
∴∠2=∠4(同角的補角相等)
∴EF∥AB(內(nèi)錯角相等,兩直線平行)
∴∠3=∠ADE(兩直線平行,內(nèi)錯角相等)
又∵∠B=∠3(已知),
∴∠ADE=∠B(等量代換),
∴DE∥BC(同位角相等,兩直線平行)
∴∠AED=∠C(兩直線平行,同位角相等)
【解析】由圖中題意可先猜測∠AED=∠C,那么需證明DE∥BC.題中說∠1+∠2=180°,而∠1+∠4=180°所以∠2=∠4,那么可得到BD∥EF,題中有∠3=∠B,所以應(yīng)根據(jù)平行得到∠3與∠ADE之間的關(guān)系為相等.就得到了∠B與∠ADE之間的關(guān)系為相等,那么DE∥BC.
【考點精析】認真審題,首先需要了解平行線的性質(zhì)(兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個口袋中有紅球、白球共10個,這些球除顏色外都相同,將口袋中的球攪拌均勻,從中隨機模出一個球,記下它的顏色后再放回口袋中,不斷重復(fù)這一過程,共摸了100次球,發(fā)現(xiàn)有80次摸到紅球,則口袋中紅球的個數(shù)大約有( )
A.8個B.7個C.3個D.2個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,A(1,0)、點B在y軸上,將三角形OAB沿x軸負方向平移,平移后的圖形為三角形DEC,且點C的坐標為(﹣3,2).
(1)直接寫出點E的坐標;
(2)在四邊形ABCD中,點P從點B出發(fā),沿BC→CD移動.若點P的速度為每秒1個單位長度,運動時間為t秒,請解決以下問題,并說明你的理由:
①當(dāng)t為多少秒時,點P的橫坐標與縱坐標互為相反數(shù);
②求點P在運動過程中的坐標(用含t的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了測量某風(fēng)景區(qū)內(nèi)一座塔AB的高度,某人分別在塔的對面一樓房CD的樓底C、樓頂D處,測得塔頂A的仰角為45°和30°,已知樓高CD為10m,求塔的高度。(結(jié)果精確到0.1m)(參考數(shù)據(jù)≈1.41,≈1.73)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com