【題目】已知:拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論: ①4ac<b2;②方程ax2+bx+c=0的兩個(gè)根是x1=﹣1,x2=3;
③a﹣b+c>0;④當(dāng)y>0時(shí),x的取值范圍是﹣1≤x<3;
⑤當(dāng)x<0時(shí),y隨x增大而增大
其中正確的結(jié)論有(

A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)

【答案】B
【解析】解:①∵拋物線與x軸有2個(gè)交點(diǎn), ∴b2﹣4ac>0,即4ac<b2 , 所以①正確;
②∵拋物線的對稱軸為直線x=1,
而點(diǎn)(﹣1,0)關(guān)于直線x=1的對稱點(diǎn)的坐標(biāo)為(3,0),
∴方程ax2+bx+c=0的兩個(gè)根是x1=﹣1,x2=3,所以②正確;
③∵拋物線y=ax2+bx+c(a≠0)經(jīng)過點(diǎn)(﹣1,0),
∴a﹣b+c=0,所以③錯誤;
④∵拋物線與x軸的兩點(diǎn)坐標(biāo)為(﹣1,0),(3,0),
∴當(dāng)﹣1<x<3時(shí),y>0,所以④錯誤;
⑤∵拋物線的對稱軸為直線x=1,
∴當(dāng)x<1時(shí),y隨x增大而增大,所以⑤正確.
故選B.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系的相關(guān)知識,掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時(shí),拋物線開口向上; a<0時(shí),拋物線開口向下b與對稱軸有關(guān):對稱軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c),以及對拋物線與坐標(biāo)軸的交點(diǎn)的理解,了解一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒有交點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AC=12,BD=8,P是AC上的一個(gè)動點(diǎn),過點(diǎn)P作EF∥BD,與平行四邊形的兩條邊分別交于點(diǎn)E,F(xiàn).設(shè)CP=x,EF=y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:若A、B、C為數(shù)軸上三點(diǎn),若點(diǎn)CA的距離是點(diǎn)CB的距離2倍,我們就稱點(diǎn)C是(A,B)的好點(diǎn).

1)如圖1,點(diǎn)A表示的數(shù)為-1,點(diǎn)B表示的數(shù)為2.表示1的點(diǎn)C到點(diǎn)A的距離是2,到點(diǎn)B的距離是1,那么點(diǎn)C是(AB)的好點(diǎn);又如,表示0的點(diǎn)D到點(diǎn)A的距離是1,到點(diǎn)B的距離是2,那么點(diǎn)D______A,B)的好點(diǎn),但點(diǎn)D______BA)的好點(diǎn).(請?jiān)跈M線上填是或不是)知識運(yùn)用:

2)如圖2,M、N為數(shù)軸上兩點(diǎn),點(diǎn)M所表示的數(shù)為4,點(diǎn)N所表示的數(shù)為-2.?dāng)?shù)______所表示的點(diǎn)是(M,N)的好點(diǎn);

3)如圖3,A、B為數(shù)軸上兩點(diǎn),點(diǎn)A所表示的數(shù)為-20,點(diǎn)B所表示的數(shù)為40.現(xiàn)有一只電子螞蟻P從點(diǎn)B出發(fā),以4個(gè)單位每秒的速度向左運(yùn)動,到達(dá)點(diǎn)A停止.當(dāng)經(jīng)過______秒時(shí),PAB中恰有一個(gè)點(diǎn)為其余兩點(diǎn)的好點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①是一個(gè)長為2m,寬為2n的長方形(m>n),沿圖中虛線用剪刀均勻分民四塊小長方形,然后按圖②的形狀拼成一個(gè)正方形.

(1)圖②中陰影部分的正方形的邊長是多少?(用代數(shù)式表示)

(2)觀察圖②寫出下列三個(gè)代數(shù)式:(m+n)2 , (m﹣n)2 , mn之間的等量關(guān)系.

(3)若m+n=7,mn=6,求m-n.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1有兩條長度相等的相交線段AB、CD,它們相交的銳角中有一個(gè)角為60°,為了探究AD、CBCD(或AB)之間的關(guān)系,小亮進(jìn)行了如下嘗試:

(1)在其他條件不變的情況下使得ADBC,如圖2,將線段AB沿AD方向平移AD的長度,得到線段DE,然后聯(lián)結(jié)BE,進(jìn)而利用所學(xué)知識得到AD、CBCD(或AB)之間的關(guān)系:   ;(直接寫出結(jié)果)

(2)根據(jù)小亮的經(jīng)驗(yàn),請對圖1的情況(ADCB不平行)進(jìn)行嘗試,寫出AD、CBCD(或AB)之間的關(guān)系,并進(jìn)行證明;

(3)綜合(1)、(2)的證明結(jié)果,請寫出完整的結(jié)論:   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某天數(shù)學(xué)課上,老師講了整式的加減.放學(xué)后,小明回到家拿出課堂筆記,認(rèn)真地復(fù)習(xí)老師課堂上講的內(nèi)容,他突然發(fā)現(xiàn)一道題:

(﹣x2+3yx﹣y2)﹣(﹣x2+■xy﹣y2)=﹣x2﹣xy+■y2,其中兩處橫線地方的數(shù)字被鋼筆水弄污了,那么這兩處地方的數(shù)字之積應(yīng)是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是張亮、李娜兩位同學(xué)零花錢全學(xué)期各項(xiàng)支出的統(tǒng)計(jì)圖.根據(jù)統(tǒng)計(jì)圖,下列對兩位同學(xué)購買書籍支出占全學(xué)期總支出的百分比作出的判斷中,正確的是(

A. 張亮的百分比比李娜的百分比大 B. 張娜的百分比比張亮的百分比大

C. 張亮的百分比與李娜的百分比一樣大 D. 無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖描述了某汽車在行駛過程中速度與時(shí)間的關(guān)系,下列說法中正確的是________.(填序號)

①第3分鐘時(shí),汽車的速度是40千米/時(shí);

②第12分鐘時(shí),汽車的速度是0千米/時(shí);

③從第3分鐘到第6分鐘,汽車行駛了120千米;

④從第9分鐘到第12分鐘,汽車的速度從60千米/時(shí)減小到0千米/時(shí).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的對角線AC、BD相交于點(diǎn)O,過點(diǎn)D作DE∥AC且DE=AC,連接AE交OD于點(diǎn)F,連接CE、OE.

(1)求證:OE=CD;

(2)若菱形ABCD的邊長為2,∠ABC=60°,求AE的長.

查看答案和解析>>

同步練習(xí)冊答案