【題目】如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),D是的中點(diǎn),E為OD延長(zhǎng)線上一點(diǎn),且∠CAE=2∠C,AC與BD交于點(diǎn)H,與OE交于點(diǎn)F.
(1)求證:AE是⊙O的切線;
(2)若DH=9,tanC=,求直徑AB的長(zhǎng).
【答案】(1)證明見(jiàn)解析
(2)20
【解析】
(1)根據(jù)垂徑定理得到OE⊥AC,求得∠AFE=90°,求得∠EAO=90°,于是得到結(jié)論;
(2)根據(jù)等腰三角形的性質(zhì)和圓周角定理得到∠ODB=∠C,求得tanC=tan∠ODB=
設(shè)HF=3x,DF=4x,根據(jù)勾股定理得到DF=,根據(jù)相似三角形的性質(zhì)得到
求得AF=CF=
設(shè)OA=OD=x,根據(jù)勾股定理即可得到結(jié)論.
(1)∵D是的中點(diǎn)
∴OE⊥AC
∴∠AFE=90°
∴∠E+∠EAF=90°
∵∠AOE=2∠C,∠CAE=2∠C
∴∠CAE=∠AOE
∴∠E+∠AOE=90°
∴∠EAO=90°
∴AE是⊙O的切線
(2)連接AD,在RtADH中
∵∠DAC=∠C
∴tan∠DAC=tanC=
∵DH=9
∴AD=12
在RtBDA中,∵tanB=tanC=
∴sinB=
∴AB=20
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】表示以為自變量的函數(shù),則表示當(dāng)時(shí)函數(shù)的值.例如,一次函數(shù)記作,當(dāng)時(shí),函數(shù)值.現(xiàn)給出新定義:對(duì)于函數(shù),若存在實(shí)數(shù),使得成立,則稱點(diǎn)是函數(shù)的“奇妙點(diǎn)”.
(1)求函數(shù)的“奇妙點(diǎn)”;
(2)當(dāng)為何值時(shí),函數(shù)存在“奇妙點(diǎn)”?
(3)若二次函數(shù)有且只有一個(gè)“奇妙點(diǎn)”,其圖象與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),是軸上一動(dòng)點(diǎn).當(dāng)的周長(zhǎng)最短時(shí),求點(diǎn)的坐標(biāo)及的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,已知A(4,4),B(-1,1),EF=1,線段EF在x軸上平移,當(dāng)四邊形ABEF的周長(zhǎng)最小時(shí),點(diǎn)E坐標(biāo)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某種月餅形狀的俯視圖如圖1所示,該形狀由1個(gè)正六邊形和6個(gè)半圓組成,半圓直徑與正六邊形的邊長(zhǎng)相等.
現(xiàn)商家設(shè)計(jì)了2種棱柱體包裝盒,其底面分別為矩形和正六邊形(如圖2和圖3)我們可從底面的利用率來(lái)記算整個(gè)包裝盒的利用情況.(底面利用率=×100%)
(1)請(qǐng)分別計(jì)算出圖2與圖3中的底面利用率(結(jié)果保留到0.1%);
(2)考慮到節(jié)約成本,商家希望底面利用率能夠不低于80%,且底面圖形仍然采用最基本的幾何形狀,請(qǐng)問(wèn)商家的要求是否能夠滿足,若可以滿足,請(qǐng)?jiān)O(shè)計(jì)一種方案,并直接寫(xiě)出此時(shí)的利用率;若不能滿足,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】北中環(huán)橋是省城太原的一座跨汾河大橋(如圖1),它由五個(gè)高度不同,跨徑也不同的拋物線型鋼拱通過(guò)吊橋,拉鎖與主梁相連,最高的鋼拱如圖2所示,此鋼拱(近似看成二次函數(shù)的圖象-拋物線)在同一豎直平面內(nèi),與拱腳所在的水平面相交于A,B兩點(diǎn),拱高為78米(即最高點(diǎn)O到AB的距離為78米),跨徑為90米(即AB=90米),以最高點(diǎn)O為坐標(biāo)原點(diǎn),以平行于AB的直線為軸建立平面直角坐標(biāo)系,則此拋物線鋼拱的函數(shù)表達(dá)式為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,的半徑為2,圓心在坐標(biāo)原點(diǎn),正方形的邊長(zhǎng)為2,點(diǎn)、在第二象限,點(diǎn)、在上,且點(diǎn)的坐標(biāo)為(0,2).現(xiàn)將正方形繞點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)150°,點(diǎn)運(yùn)動(dòng)到了上點(diǎn)處,點(diǎn)、分別運(yùn)動(dòng)到了點(diǎn)、處,即得到正方形(點(diǎn)與重合);再將正方形繞點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)150°,點(diǎn)運(yùn)動(dòng)到了上點(diǎn)處,點(diǎn)、分別運(yùn)動(dòng)到了點(diǎn)、處,即得到正方形(點(diǎn)與重合),……,按上述方法旋轉(zhuǎn)2020次后,點(diǎn)的坐標(biāo)為( )
A.(0,2)B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)銷(xiāo)售一種名牌襯衫,平均每天可售出20件,每件盈利40元,為了擴(kuò)大銷(xiāo)售,增加盈利,盡量減少庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價(jià)1元,商場(chǎng)平均每天可多售出2件,
(1)若商場(chǎng)平均每天要盈利1200元,每件襯衫應(yīng)降價(jià)多少元?
(2)當(dāng)每件襯衫降價(jià)多少元時(shí),商場(chǎng)每天獲利最大,每天獲利最大是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位在疫情期間用3000元購(gòu)進(jìn)A、B兩種口罩1100個(gè),購(gòu)買(mǎi)A種口罩與購(gòu)買(mǎi)B種口罩的費(fèi)用相同,且A種口罩的單價(jià)是B種口罩單價(jià)的1.2倍;
(1)求A,B兩種口罩的單價(jià)各是多少元?
(2)若計(jì)劃用不超過(guò)7000元的資金再次購(gòu)進(jìn)A、B兩種口罩共2600個(gè),已知A、B兩種口罩的進(jìn)價(jià)不變,求A種口罩最多能購(gòu)進(jìn)多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】使用家用燃?xì)庠顭_(kāi)同一壺水所需的燃?xì)饬?/span>(單位:)與旋鈕的旋轉(zhuǎn)角度(單位:度)()近似滿足函數(shù)關(guān)系y=ax2+bx+c(a≠0).如圖記錄了某種家用燃?xì)庠顭_(kāi)同一壺水的旋鈕角度與燃?xì)饬?/span>的三組數(shù)據(jù),根據(jù)上述函數(shù)模型和數(shù)據(jù),可推斷出此燃?xì)庠顭_(kāi)一壺水最節(jié)省燃?xì)獾男o角度約為( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com