【題目】在平面直角坐標(biāo)系中,直線(且)與軸交于點(diǎn),過(guò)點(diǎn)作直線軸,且與交于點(diǎn).
(1)當(dāng),時(shí),求的長(zhǎng);
(2)若,,且軸,判斷四邊形的形狀,并說(shuō)明理由.
【答案】(1)BC=1;(2)四邊形OBDA是平行四邊形,見(jiàn)解析.
【解析】
(1)理由待定系數(shù)法求出點(diǎn)D坐標(biāo)即可解決問(wèn)題;
(2)四邊形OBDA是平行四邊形.想辦法證明BD=OA=3即可解決問(wèn)題.
解:(1)當(dāng)m=-2,n=1時(shí),直線的解析式為y=-2x+1,
當(dāng)x=1時(shí),y=-1,
∴B(1,-1),
∴BC=1.
(2)結(jié)論:四邊形OBDA是平行四邊形.
理由:如圖,∵BD∥x軸,B(1,1-m),D(4,3+m),
∴1-m=3+m,
∴m=-1,
∵B(1,m+n),
∴m+n=1-m,
∴n=3,
∴直線y=-x+3,
∴A(3,0),
∴OA=3,BD=3,
∴OA=BD,OA∥BD,
∴四邊形OBDA是平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠BAC的平分線與BC的垂直平分線相交于點(diǎn)D,DE⊥AB,DF⊥AC,垂足分別為E,F,AB=11,AC=5,則BE=______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知BC∥DE,BF平分∠ABC,DC平分∠ADE,則下列結(jié)論:①∠ACB=∠E;②DF平分∠ADC;③∠BFD=∠BDF;④∠ABF=∠BCD,其中正確的有( )
A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在菱形ABCD中,M是BC邊上的點(diǎn)(不與B,C兩點(diǎn)重合),AB=AM,點(diǎn)B關(guān)于直線AM對(duì)稱的點(diǎn)是N,連接DN,設(shè)∠ABC,∠CDN的度數(shù)分別為,,則關(guān)于的函數(shù)解析式是_______________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形ABCD中,AB=4,BC=10,E是直線AD上任意一點(diǎn)(不與點(diǎn)A重合),點(diǎn)A關(guān)于直線BE的對(duì)稱點(diǎn)為A′,AA′所在直線與直線BC交于點(diǎn)F.
(1)如圖①,當(dāng)點(diǎn)E在線段AD上時(shí),①若△ABE ∽△DEC,求AE的長(zhǎng);
②設(shè)AE=x,BF=y,求y與x的函數(shù)表達(dá)式.
(2)線段DA′的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)(1)【問(wèn)題發(fā)現(xiàn)】小明遇到這樣一個(gè)問(wèn)題:
如圖1,△ABC是等邊三角形,點(diǎn)D為BC的中點(diǎn),且滿足∠ADE=60°,DE交等邊三角形外角平分線CE所在直線于點(diǎn)E,試探究AD與DE的數(shù)量關(guān)系.
(1)小明發(fā)現(xiàn),過(guò)點(diǎn)D作DF//AC,交AC于點(diǎn)F,通過(guò)構(gòu)造全等三角形,經(jīng)過(guò)推理論證,能夠使問(wèn)題得到解決,請(qǐng)直接寫(xiě)出AD與DE的數(shù)量關(guān)系: ;
(2)【類比探究】如圖2,當(dāng)點(diǎn)D是線段BC上(除B,C外)任意一點(diǎn)時(shí)(其它條件
不變),試猜想AD與DE之間的數(shù)量關(guān)系,并證明你的結(jié)論.
(3)【拓展應(yīng)用】當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上,且滿足CD=BC(其它條件不變)時(shí),
請(qǐng)直接寫(xiě)出△ABC與△ADE的面積之比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把Rt△ABC繞頂點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到Rt△DFC,若直線DF垂直平分AB,垂足為點(diǎn)E,連接BF,CE,且BC=2.下面四個(gè)結(jié)論:
①BF=;
②∠CBF=45°;
③∠CED=30°;
④△ECD的面積為,
其中正確的結(jié)論有_____.(填番號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明某天上午9時(shí)騎自行車離開(kāi)家,15時(shí)回到家,他有意描繪了離家的距離與時(shí)間的變化情況(如圖所示).
(1)圖象表示了哪兩個(gè)變量的關(guān)系?哪個(gè)是自變量?哪個(gè)是因變量?
(2)10時(shí)和13時(shí),他分別離家多遠(yuǎn)?
(3)他到達(dá)離家最遠(yuǎn)的地方是什么時(shí)間?離家多遠(yuǎn)?
(4)11時(shí)到12時(shí)他行駛了多少千米?
(5)他可能在哪段時(shí)間內(nèi)休息,并吃午餐?
(6)他由離家最遠(yuǎn)的地方返回時(shí)的平均速度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩地相距360千米,一輛販毒車從甲地往乙地接頭取貨,警方截取情報(bào)后,立即組織干警從甲地出發(fā),前往乙地緝拿這伙犯罪分子,結(jié)果警車與販毒車同時(shí)到達(dá),將犯罪分子一網(wǎng)打盡.已知販毒車比警車早出發(fā)1小時(shí)15分,警車與販毒車的速度比為4∶3,求販毒車和警車的速度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com