【題目】如圖,在一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤中,指針位置固定,三個(gè)扇形的面積都相等,且分別標(biāo)有數(shù)字1,2,3.

(1)小明轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),指針?biāo)干刃沃械臄?shù)字是奇數(shù)的概率為________;

(2)小明先轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),記錄下指針?biāo)干刃沃械臄?shù)字;接著再轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),再次記錄下指針?biāo)干刃沃械臄?shù)字,求這兩個(gè)數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解)

【答案】(1);(2)這兩個(gè)數(shù)字之和是3的倍數(shù)的概率為

【解析】

(1)在標(biāo)有數(shù)字1、2、33個(gè)轉(zhuǎn)盤中,奇數(shù)的有1、32個(gè),根據(jù)概率公式可得;(2)用列表法列出所有情況,再計(jì)算概率.

解:(1)∵在標(biāo)有數(shù)字1、2、33個(gè)轉(zhuǎn)盤中,奇數(shù)的有1、32個(gè),

∴指針?biāo)干刃沃械臄?shù)字是奇數(shù)的概率為,

故答案為:;

(2)列表如下:

1

2

3

1

(1,1)

(2,1)

(3,1)

2

(1,2)

(2,2)

(3,2)

3

(1,3)

(2,3)

(3,3)

由表可知,所有等可能的情況數(shù)為9種,其中這兩個(gè)數(shù)字之和是3的倍數(shù)的有3種,

所以這兩個(gè)數(shù)字之和是3的倍數(shù)的概率為=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△ABC的頂點(diǎn)A(1,1),B(3,1),規(guī)定把△ABC“先沿x軸翻折,再向左平移1個(gè)單位為一次變換.如圖這樣的等邊△ABC連續(xù)經(jīng)過2018次變換后,頂點(diǎn)C的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一塊邊長為的等邊三角形紙板,如圖1,經(jīng)過底邊的中點(diǎn)剪去第一個(gè)正三角形;如圖2,過剩余底邊的中點(diǎn)再剪去第二個(gè)正三角形,然后依次過剩余底邊的中點(diǎn)再剪去更小的第三個(gè)第四···正三角形,則剪掉的第個(gè)正三角形的面積是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=3ax2+2bx+c(a≠0)。

(1)若a=b=1,C=-1。求此拋物線與x軸的交點(diǎn)的坐標(biāo);

(2)若a=,c=b+2,其中b是整數(shù)。

①直接寫出拋物線的頂點(diǎn)坐標(biāo)(用含有b的代數(shù)式表示),并寫出頂點(diǎn)縱坐標(biāo)的最大值;

②若拋物線在-2≤x≤2時(shí),拋物線的最小值是-3,求b的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李大媽加盟了紅紅全國燒烤連鎖店,該公司的宗旨是薄利多銷,經(jīng)市場調(diào)查發(fā)現(xiàn),當(dāng)羊肉串的單價(jià)定為元時(shí),每天能賣出串,在此基礎(chǔ)上,每加價(jià)元李大媽每天就會(huì)少賣出串,考慮了所有因素后李大媽的每串羊肉串的成本價(jià)為元,若李大媽每天銷售這種羊肉串想獲得利潤是元,那么請問這種羊肉串應(yīng)怎樣定價(jià)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊△ABC中,DBC邊上一點(diǎn),EAC邊上一點(diǎn),且∠ADE=60°.

(1)求證:△ABD∽△DCE

(2)若BD=3,CE=2,求△ABC的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一塊長16m,寬12m的矩形荒地上,要建造一個(gè)花園,要求花園面積是荒地面積的一半,如圖所示分別是小華與小芳的設(shè)計(jì)方案.同學(xué)們都認(rèn)為小華的方案是正確的,但對小芳方案是否符合條件有不同意見,你認(rèn)為小芳的方案符合條件嗎?若不符合,請你依照小芳的方案設(shè)計(jì)小路的寬度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角三角形ABC中,∠BAC=90°,(AC>AB),在邊AC上取一點(diǎn)D,使得BD=CD,點(diǎn)E、F分別是線段BC、BD的中點(diǎn),連接AFEF,作∠FEM=FDC,交AC于點(diǎn)M,如圖1所示.

(1)請判斷四邊形EFDM是什么特殊的四邊形,并證明你的結(jié)論;

(2)將∠FEM繞點(diǎn)E順時(shí)針旋轉(zhuǎn)到∠GEN,交線段AF于點(diǎn)G,交AC于點(diǎn)N,如圖2所示,請證明:EG=EN;

(3)在第(2)條件下,若點(diǎn)GAF中點(diǎn),且∠C=30°,AB=3,如圖3,求GE的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,,,AD、BE相交于點(diǎn)M,連接CM
求證:;
的度數(shù)用含的式子表示;
如圖2,當(dāng)時(shí),點(diǎn)P、Q分別為ADBE的中點(diǎn),分別連接CP、CQ、PQ,判斷的形狀,并加以證明.

查看答案和解析>>

同步練習(xí)冊答案