【題目】我市某學校開展“遠是君山,磨礪意志,保護江豚,愛鳥護鳥”為主題的遠足活動.已知學校與君山島相距24千米,遠足服務人員騎自行車,學生步行,服務人員騎自行車的平均速度是學生步行平均速度的2.5倍,服務人員與學生同時從學校出發(fā),到達君山島時,服務人員所花時間比學生少用了3.6小時,求學生步行的平均速度是多少千米/小時.

【答案】解:設學生步行的平均速度是每小時x千米.
服務人員騎自行車的平均速度是每小時2.5x千米,
根據(jù)題意: =3.6,
解得:x=3,
經(jīng)檢驗,x=3是所列方程的解,且符合題意.
答:學生步行的平均速度是每小時3千米
【解析】設學生步行的平均速度是每小時x千米,服務人員騎自行車的平均速度是每小時2.5x千米,根據(jù)學校與君山島距離為24千米,服務人員所花時間比學生少用了3.6小時,可列方程求解.本題考查了分式方程的應用,關鍵設出速度,以時間做為等量關系列方程求解.
【考點精析】認真審題,首先需要了解分式方程的應用(列分式方程解應用題的步驟:審題、設未知數(shù)、找相等關系列方程、解方程并驗根、寫出答案(要有單位)).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+2x+6(a≠0)交x軸與A,B兩點(點A在點B左側),將直尺WXYZ與x軸負方向成45°放置,邊WZ經(jīng)過拋物線上的點C(4,m),與拋物線的另一交點為點D,直尺被x軸截得的線段EF=2,且△CEF的面積為6.

(1)求該拋物線的解析式;
(2)探究:在直線AC上方的拋物線上是否存在一點P,使得△ACP的面積最大?若存在,請求出面積的最大值及此時點P的坐標;若不存在,請說明理由.
(3)將直尺以每秒2個單位的速度沿x軸向左平移,設平移的時間為t秒,平移后的直尺為W′X′Y′Z′,其中邊X′Y′所在的直線與x軸交于點M,與拋物線的其中一個交點為點N,請直接寫出當t為何值時,可使得以C、D、M、N為頂點的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為加快城市群的建設與發(fā)展,在A,B兩城市間新建條城際鐵路,建成后,鐵路運行里程由現(xiàn)在的120km縮短至114km,城際鐵路的設計平均時速要比現(xiàn)行的平均時速快110km,運行時間僅是現(xiàn)行時間的
(1)求建成后的城際鐵路在A,B兩地的運行時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:
(1)( +1)0+|﹣2|﹣31
(2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩家草莓采摘園的草莓品質相同,銷售價格也相同.“五一期間”,兩家均推出了優(yōu)惠方案,甲采摘園的優(yōu)惠方案是:游客進園需購買50元的門票,采摘的草莓六折優(yōu)惠;乙采摘園的優(yōu)惠方案是:游客進園不需購買門票,采摘園的草莓超過一定數(shù)量后,超過部分打折優(yōu)惠.優(yōu)惠期間,設某游客的草莓采摘量為x(千克),在甲采摘園所需總費用為y1(元),在乙采摘園所需總費用為y2(元),圖中折線OAB表示y2與x之間的函數(shù)關系.

(1)甲、乙兩采摘園優(yōu)惠前的草莓銷售價格是每千克元;
(2)求y1、y2與x的函數(shù)表達式;
(3)在圖中畫出y1與x的函數(shù)圖象,并寫出選擇甲采摘園所需總費用較少時,草莓采摘量x的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:( ﹣3)0﹣2sin30°﹣

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,AB是⊙O的直徑,點C為⊙O外一點,CA,CD是⊙O的切線,A,D為切點,連接BD,AD.若∠ACD=30°,則∠DBA的大小是( 。

A.15°
B.30°
C.60°
D.75°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為3cm,動點M從點B出發(fā)以3cm/s的速度沿著邊BC—CD—DA運動,到達點A停止運動,另一動點N同時從點B出發(fā),以1cm/s的速度沿著邊BA向點A運動,到達點A停止運動,設點M運動時間為x(s),△AMN的面積為y(cm2),則y關于x的函數(shù)圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的邊長為2cm,∠DAB=60°.點P從A點出發(fā),以 cm/s的速度,沿AC向C作勻速運動;與此同時,點Q也從A點出發(fā),以1cm/s的速度,沿射線AB作勻速運動.當P運動到C點時,P、Q都停止運動.設點P運動的時間為ts.
(1)當P異于A、C時,請說明PQ∥BC;
(2)以P為圓心、PQ長為半徑作圓,請問:在整個運動過程中,t為怎樣的值時,⊙P與邊BC分別有1個公共點和2個公共點?

查看答案和解析>>

同步練習冊答案