【題目】(1)如圖1,在△ABC中,∠ACB=90°,AC=BC,直線l過點C,點A,B在直線l同側,BD⊥l,AE⊥l,垂足分別為D,E.求證:△AEC≌△CDB.
(2)如圖2,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,利用(1)中的結論,請按照圖中所標注的數(shù)據(jù)計算圖中實線所圍成的圖形的面積S= .
【答案】(1)見解析;(2)S= 50.
【解析】
(1)因為BD⊥l,AE⊥l,可得∠AEC=∠CDB,結合題意得到∠CAE=∠BCD,再根據(jù)AAS證明即可.
(2)利用(1)中結論,根據(jù)全等三角形的性質進行計算即可解決問題.
(1)如圖1中,
∵BD⊥l,AE⊥l,
∴∠AEC=∠CDB=90°,
∴∠CAE+∠ACE=90°,
∴∠BCD+∠ACE=90°,
∴∠CAE=∠BCD,
在△AEC和△CDB中
,
∴△AEC≌△CDB(AAS).
(2)如圖2中,因為AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,
由(1)可知:△EFA≌△AGB,△BGC≌△CHD,
∴EF=AG=6,AF=BG=CH=3,CG=DH=4,
∴S=(6+4)×16-18-12=50.
故答案為50.
科目:初中數(shù)學 來源: 題型:
【題目】某市居民生活用水的費用由“城市供水費” 和“污水處理費”兩部分組成.為了鼓勵市民節(jié)約用水, 其中城市供水費按階梯式計費:一個月用水 10 噸以內(包括 10 噸)的用戶,每噸收 1.5 元;一個月用水超過 10 噸的用戶,10 噸水仍按每噸 1.5 元收費,超過 10 噸的部分,按每噸 2 元收費.另外污水處理費按每噸 0.65 元收。
(1)某居民 5 月份用水 8 噸,應交水費多少元?
(2)某居民 6 月份用水 12 噸,應交水費多少元?
(3)若某戶某月用水 x 噸,請你用含有 x 的代數(shù)式表示該月應交的水費
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1所示是一枚質地均勻的骰子.骰子有六個面并分別代表數(shù)字1,2,3,4,5,6.如圖2,正六邊形ABCDEF的頂點處各有一個圈.跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子向上的一面上的點數(shù)是幾,就沿正六邊形的邊順時針方向連續(xù)跳幾個邊長.如:若從圈A起跳,第一次擲得3,就順時針連續(xù)跳3個邊長,落到圈D;若第二次擲得2,就從圈D開始順時針連續(xù)跳2個邊長,落到圈F……
設游戲者從圈A起跳.
(1)小明隨機擲一次骰子,求落回到圈A的概率P1;
(2)小亮隨機擲兩次骰子,用列表法或畫樹狀圖法求最后落回到圈A的概率P2,并指出他與小明落回到圈A的可能性一樣嗎?
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,△ABC是等邊三角形,AE=CD,BQ⊥AD于Q,BE交AD于點P.
(1)求證:△ABE≌△CAD;
(2)若PQ=2,BE=5,求PE的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下面三行數(shù):
2, 4, 8, 16, 32, 64, …;①
0, 6, 6, 18, 30, 66, …;②
1, 2, 4, 8, 16, 32, …;③
(1)分別寫出每一行的第個數(shù);
(2)取每行數(shù)的第個數(shù),使這三個數(shù)的和為162,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BC為弦,D為弧AC的中點,AC、BD相交于點E.AP交BD的延長線于點P.∠PAC=2∠CBD.
(1)求證:AP是⊙O的切線;
(2)若PD=3,AE=5,求△APE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司在甲、乙兩座倉庫分別有農用車輛和輛,現(xiàn)需要調往縣輛, 調往縣輛,已知從甲倉庫調運一輛農用車到縣和縣的運費分別為元和元,從乙倉庫調運一輛農用車到縣和縣的運費分別為元和元,從甲倉庫調往縣農用車輛.
甲倉庫調往縣農用車____ 輛,乙倉庫調往縣農用車 _輛、乙倉庫調往B縣農用車____ 輛(用含的代數(shù)式表示);
寫出公司從甲、乙兩座倉庫調農用車到、兩縣所需要的總運費(用含的代數(shù)式表示);
在的基礎上,求當總運費是元時,從甲倉庫調往縣農用車多少輛?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知反比例函數(shù)的圖象與反比例函數(shù)的圖象關于軸對稱,,是函數(shù)圖象上的兩點,連接,點是函數(shù)圖象上的一點,連接,.
(1)求,的值;
(2)求所在直線的表達式;
(3)求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在四邊形ABCD中,AB∥DC,AB=AD,對角線AC,BD交于點O,AC平分∠BAD,過點C作CE∥DB交AB的延長線于點E,連接OE.
(1)求證:四邊形ABCD是菱形;
(2)若∠DAB=60°,且AB=4,求OE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com