【題目】某校體育組為了了解學(xué)生喜歡的體育項目,從全校同學(xué)中隨機抽取了若干名同學(xué)進行調(diào)查,每位同學(xué)從乒乓球、籃球、羽毛球、排球、跳繩中選擇一項最喜歡的項目,并將調(diào)查的結(jié)果繪制成如下的兩幅統(tǒng)計圖.根據(jù)以上統(tǒng)計圖,解答下列問題:
(1)這次被調(diào)查的共有多少名同學(xué)?并補全條形統(tǒng)計圖.
(2)若全校有1200名同學(xué),估計全校最喜歡籃球和排球的共有多少名同學(xué)?

【答案】
(1)解:這次被調(diào)查的學(xué)生總數(shù):30÷15%=200(人),

跳繩人數(shù):200﹣70﹣40﹣30﹣12=48,如圖所示


(2)解:1200× ×100%=312(人).

答:全校有1200名同學(xué),估計全校最喜歡籃球和排球的共有312名同學(xué)


【解析】(1)利用條形統(tǒng)計圖可得喜歡羽毛球的人數(shù)有30人,根據(jù)扇形統(tǒng)計圖可得喜歡羽毛球的人數(shù)有15%,利用30÷15%即可得到被調(diào)查的總?cè)藬?shù);用總?cè)藬?shù)﹣喜歡乒乓球的人數(shù)﹣喜歡籃球的人數(shù)﹣喜歡羽毛球的人數(shù)﹣喜歡排球的人數(shù)可得喜歡跳繩的人數(shù),再補圖即可;(2)計算出調(diào)查的人數(shù)中喜歡籃球和排球的人數(shù)所占百分比,再乘以1200即可.
【考點精析】解答此題的關(guān)鍵在于理解扇形統(tǒng)計圖的相關(guān)知識,掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況,以及對條形統(tǒng)計圖的理解,了解能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c與x軸交于點A(﹣1,0),頂點坐標為(1,n),與y軸的交點在(0,2)、(0,3)之間(包含端點),則下列結(jié)論: ①當x>3時,y<0;②3a+b>0;③﹣1≤a≤﹣ ;④3≤n≤4中,
正確的是(

A.①②
B.③④
C.①④
D.①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A在反比例函數(shù)y=﹣ (x<0)的圖象上移動,連接OA,作OB⊥OA,并滿足∠OAB=30°.在點A的移動過程中,追蹤點B形成的圖象所對應(yīng)的函數(shù)表達式為(
A.y= (x>0)
B.y= (x>0)
C.y= (x>0)
D.y= (x>0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=ax+b與反比例函數(shù)y= (x<0)的圖象交于點A.與x軸、y軸分別交于點B、C,過點A作AD⊥x軸于點D,過點D作DE∥AB,交y軸于點E.己知四邊形ADEC的面積為6.
(1)求k的值;
(2)若AD=3OC,tan∠DAC=2.求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在△ABC中,DE∥BC,DF∥AC,則下列比例式不正確的是(
A. =
B. =
C. =
D. =

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠CAB=90°,AD⊥BC于點D,點E為AB的中點,EC與AD交于點G,點F在BC上.
(1)如圖1,AC:AB=1:2,EF⊥CB,求證:EF=CD.
(2)如圖2,AC:AB=1: ,EF⊥CE,求EF:EG的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:甲乙兩車分別從相距300千米的A、B兩地同時出發(fā)相向而行,其中甲到達B地后立即返回,如圖是它們離各自出發(fā)地的距離y(千米)與行駛時間x(小時)之間的函數(shù)圖象.

(1)求甲車離出發(fā)地的距離y(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(2)若已知乙車行駛的速度是40千米/小時,求出發(fā)后多長時間,兩車離各自出發(fā)地的距離相等;

(3)在上述條件下,直接寫出它們在行駛過程中相遇時的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,BC⊥AB,連結(jié)OC,弦AD∥OC,直線CD交BA的延長線于點E.
(1)求證:直線CD是⊙O的切線;
(2)若DE=2BC,求AD:OC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,科技小組準備用材料圍建一個面積為60m2的矩形科技園ABCD,其中一邊AB靠墻,墻長為12 m.設(shè)AD的長為x m,DC的長為y m.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若圍成矩形科技園ABCD的三邊材料總長不超過26m,材料AD和DC的長都是整米數(shù),求出滿足條件的所有圍建方案.

查看答案和解析>>

同步練習(xí)冊答案