【題目】《算法統(tǒng)宗》是中國古代數(shù)學(xué)名著,作者是我國明代數(shù)學(xué)家程大位.在《算法統(tǒng)宗》中記載:“以繩測井,若將繩三折測之,繩多4尺,若將繩四折測之,繩多1尺,繩長井深各幾何?”
譯文:“用繩子測水井深度,如果將繩子折成三等份,井外余繩4尺;如果將繩子折成四等份,井外余繩1尺.問繩長、井深各是多少尺?”
設(shè)井深為x尺,根據(jù)題意列方程,正確的是( 。
A. 3(x+4)=4(x+1) B. 3x+4=4x+1
C. 3(x﹣4)=4(x﹣1) D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)A、C坐標(biāo)分別是(8,0),(0,4),反比例函數(shù)y= (x>0)的圖象過對角線的交點(diǎn)P并且與AB、BC分別交于D、E兩點(diǎn),連接OD、OE、DE,則△ODE的面積為( )
A.14
B.12
C.15
D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地上網(wǎng)有兩種收費(fèi)方式,用戶可以任選其一:
(A)記時(shí)制:2.8元/小時(shí),
(B)包月制:16元/月.此外,每一種上網(wǎng)方式都加收通訊費(fèi)1.2元/小時(shí).
(1)某用戶上網(wǎng)20小時(shí),選用哪種上網(wǎng)方式比較合算?
(2)當(dāng)上網(wǎng)時(shí)間在什么小時(shí)時(shí),兩種上網(wǎng)費(fèi)用一樣多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段CD在線段AB上,且CD=2,若線段AB的長度是一個正整數(shù),則圖中以A,B,C,D這四點(diǎn)中任意兩點(diǎn)為端點(diǎn)的所有線段長度之和可能是( )
A.28 B.29 C.30 D.31
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為直線AB上一點(diǎn),∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)請你數(shù)一數(shù),圖中有多少個小于平角的角;
(2)求出∠BOD的度數(shù);
(3)請通過計(jì)算說明OE是否平分∠BOC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)新建了一棟四層的教學(xué)樓,每層樓有10間教室,進(jìn)出這棟教學(xué)樓共有4個門,其中兩個正門大小相同,兩個側(cè)門大小也相同.安全檢查中,對4個門進(jìn)行了測試,當(dāng)同時(shí)開啟一個正門和兩個側(cè)門時(shí),2分鐘內(nèi)可以通過560名學(xué)生;當(dāng)同時(shí)開啟一個正門和一個側(cè)門時(shí),4分鐘內(nèi)可以通過800名學(xué)生.
(1)求平均每分鐘一個正門和一個側(cè)門各可以通過多少名學(xué)生?
(2)檢查中發(fā)現(xiàn),出現(xiàn)緊急情況時(shí),因?qū)W生擁擠,出門的效率將降低20%,安全檢查規(guī)定:在緊急情況下全樓的學(xué)生應(yīng)在5分鐘內(nèi)通過這4個門安全撤離,假設(shè)這棟教學(xué)大樓每間教室最多有45名學(xué)生,問:該教學(xué)樓建造的這4個門是否符合安全規(guī)定?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解下列方程:
(1)2(10﹣0.5y)=﹣(1.5y+2)
(2)(x﹣5)=3﹣(x﹣5)
(3)﹣1=
(4)x﹣(x﹣9)=[x+(x﹣9)]
(5) -=0.5x+2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】像(+2)(﹣2)=1、=a(a≥0)、(+1)(﹣1)=b﹣1(b≥0)……兩個含有二次根式的代數(shù)式相乘,積不含有二次根式,我們稱這兩個代數(shù)式互為有理化因式.例如,與, +1與﹣1,2+3與2﹣3等都是互為有理化因式.進(jìn)行二次根式計(jì)算時(shí),利用有理化因式,可以化去分母中的根號.請完成下列問題:
(1)化簡:;
(2)計(jì)算:;
(3)比較與的大小,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個不等實(shí)根x1、x2.
(1)求實(shí)數(shù)k的取值范圍.
(2)若方程兩實(shí)根x1、x2滿足x1+x2=﹣x1x2,求k的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com