【題目】如圖順次連接等腰梯形四邊中點(diǎn)得到一個四邊形,再順次連接所得四邊形四邊的中點(diǎn)得到的圖形是( )
A. 等腰梯形B. 直角梯形C. 菱形D. 矩形
【答案】D
【解析】
首先作出圖形,根據(jù)三角形的中位線定理,可以得到,,,再根據(jù)等腰梯形的對角線相等,即可證得四邊形EFGH的四邊相等,即可證得是菱形,然后根據(jù)三角形中位線定理即可證得四邊形OPMN的一組對邊平行且相等,則是平行四邊形,在根據(jù)菱形的對角線互相垂直,即可證得平行四邊形的一組臨邊互相垂直,即可證得四邊形OPMN是矩形.
解:連接AC,BD.
∵E,F是AB,AD的中點(diǎn),即EF是的中位線.
,
同理:,,.
又等腰梯形ABCD中,.
.
四邊形EFGH是菱形.
是的中位線,
∴EF EG,,
同理,NMEG,
∴EFNM,
四邊形OPMN是平行四邊形.
,,
又菱形EFGH中,,
平行四邊形OPMN是矩形.
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,AB=AC,∠ABC =,D是BC邊上一點(diǎn),以AD為邊作,使AE=AD,+=180°.
(1)直接寫出∠ADE的度數(shù)(用含的式子表示);
(2)以AB,AE為邊作平行四邊形ABFE,
①如圖2,若點(diǎn)F恰好落在DE上,求證:BD=CD;
②如圖3,若點(diǎn)F恰好落在BC上,求證:BD=CF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸分別交于點(diǎn)A、B,與y軸交于點(diǎn)C,且OA=1,OB=3,頂點(diǎn)為D,對稱軸交x軸于點(diǎn)Q.
(1)求拋物線對應(yīng)的二次函數(shù)的表達(dá)式;
(2)點(diǎn)P是拋物線的對稱軸上一點(diǎn),以點(diǎn)P為圓心的圓經(jīng)過A、B兩點(diǎn),且與直線CD相切,求點(diǎn)P的坐標(biāo);
(3)在拋物線的對稱軸上是否存在一點(diǎn)M,使得△DCM∽△BQC?如果存在,求出點(diǎn)M的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于點(diǎn)A(﹣1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,﹣3).
(1)求該拋物線所對應(yīng)的二次函數(shù)的表達(dá)式及頂點(diǎn)M的坐標(biāo);
(2)連結(jié)CB、CM,過點(diǎn)M作MN⊥y軸于點(diǎn)N,求證:∠BCM=90°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條筆直的公路上有A、B、C三地,C地位于A、B兩地之間,甲車從A地沿這條公路勻速駛向C地,乙車從B地沿這條公路勻速駛向A地,在甲車出發(fā)至甲車到達(dá)C地的過程中,甲、乙兩車各自與C地的距離y(km)與甲車行駛時間t(h)之間的函數(shù)關(guān)系如圖所示.下列結(jié)論:①甲車出發(fā)2h時,兩車相遇;②乙車出發(fā)1.5h時,兩車相距170km;③乙車出發(fā)h時,兩車相遇;④甲車到達(dá)C地時,兩車相距40km.其中正確的是______(填寫所有正確結(jié)論的序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們在《有理數(shù)》這一章中學(xué)習(xí)過絕對值的概念:
一般的,數(shù)軸上表示數(shù)的點(diǎn)與原點(diǎn)的距離叫做數(shù)的絕對值,記作.
實際上,數(shù)軸上表示數(shù)的點(diǎn)與原點(diǎn)的距離可記作,數(shù)軸上表示數(shù)的點(diǎn)與表示數(shù)2的點(diǎn)的距離可記作,那么:
(1)①數(shù)軸上表示數(shù)3的點(diǎn)與表示數(shù)1的點(diǎn)的距離可記作 .
②數(shù)軸上表示數(shù)的點(diǎn)與表示數(shù)2的點(diǎn)的距離可記作 .
③數(shù)軸上表示數(shù)的點(diǎn)與表示數(shù)的點(diǎn)的距離可記作 .
(2)數(shù)軸上與表示數(shù)的點(diǎn)的距離為5的點(diǎn)有 個,它表示的數(shù)為 .
(3)拓展:①當(dāng)數(shù)取值為 時,數(shù)軸上表示數(shù)的點(diǎn)與表示數(shù)的點(diǎn)的距離最小.
②當(dāng)整數(shù)取值為 時,式子有最小值為 .
③當(dāng)取值范圍為 時,式子有最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,動點(diǎn)S從點(diǎn)A出發(fā),沿線段AB運(yùn)動至點(diǎn)B后,立即按原路返回,點(diǎn)S在運(yùn)動過程中速度不變,則以點(diǎn)B為圓心,線段BS長為半徑的圓的面積m與點(diǎn)S的運(yùn)動時間t之間的函數(shù)關(guān)系圖象大致為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,△ABC是等邊三角形,四邊形BDEF是菱形,其中∠E=60°,將菱形BDEF繞點(diǎn)B按順時針方向旋轉(zhuǎn),甲、乙兩位同學(xué)發(fā)現(xiàn)在此旋轉(zhuǎn)過程中,有如下結(jié)論:
甲:線段AF與線段CD的長度總相等;
乙:直線AF和直線CD所夾的銳角的度數(shù)不變;
那么,你認(rèn)為( 。
A. 甲、乙都對 B. 乙對甲不對
C. 甲對乙不對 D. 甲、乙都不對
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com