【題目】如圖,已知AB=AC,∠A=36°,AB的中垂線MN交AC于點(diǎn)D,交AB于點(diǎn)M,
求證:(1)BD平分∠ABC;
(2)△BCD為等腰三角形.
【答案】(1)證明見解析(2)證明見解析
【解析】試題分析:(1)由AB的中垂線MN交AC于點(diǎn)D,交AB于M,求得△ABD是等腰三角形,即可求得∠ABD的度數(shù),然后根據(jù)等邊對(duì)等角,求得∠DBC的度數(shù),從而得證;
(2)根據(jù)(1)的結(jié)論和外角的性質(zhì),可得∠BDC=∠C,再根據(jù)等角對(duì)等邊得證.
試題解析:(1)∵M(jìn)N為AB的中垂線,
∴AD=BD,
則∠A=∠ABD=36°,
∵AB=AC,∠A=36°,
∴∠ABC=∠C=72°,
∴∠DBC=36°,
因此,BD平分∠ABC;
(2)由①和∠2=36° ∠C=72° ,
∵∠BDC=180°-36°-72°=72°,
∴∠C=∠ABD+∠DBC=∠BDC,
∴△BCD為等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,如果AB∥CD,那么圖中相等的內(nèi)錯(cuò)角是( 。
A.∠1與∠5,∠2與∠6
B.∠3與∠7,∠4與∠8
C.∠5與∠1,∠4與∠8
D.∠2與∠6,∠7與∠3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB//CD,∠B=∠ADC,點(diǎn)E是BC邊上的一點(diǎn),且AE=DC.
(1)求證:△ABC≌△EAD ;
(2)如果AB⊥AC,求證:∠BAE= 2∠ACB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一個(gè)多邊形的內(nèi)角和等于1800度,則這個(gè)多邊形是( )
A.十二邊形B.十邊形C.九邊形D.八邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小明想測(cè)量學(xué)校教學(xué)樓的高度,教學(xué)樓AB的后面有一建筑物CD,他測(cè)得當(dāng)光線與地面成22°的夾角時(shí),教學(xué)樓在建筑物的墻上留下高2m高的影子CE;而當(dāng)光線與地面成45°的夾角時(shí),教學(xué)樓頂A在地面上的影子F與墻角C有13m的距離(點(diǎn)B,F(xiàn),C在同一條直線上)
(1)請(qǐng)你幫小明計(jì)算一下學(xué)校教學(xué)樓的高度;
(2)為了迎接上級(jí)領(lǐng)導(dǎo)檢查,學(xué)校準(zhǔn)備在AE之間掛一些彩旗,請(qǐng)計(jì)算AE之間的長(zhǎng).(結(jié)果精確到1m,參考數(shù)據(jù):sin22°≈0.375,cos22°≈0.9375,tan22°≈0.4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】舌尖上的浪費(fèi)讓人觸目驚心,據(jù)統(tǒng)計(jì)中國(guó)每年浪費(fèi)的食物總量折合糧食約499.5億千克,這個(gè)數(shù)用科學(xué)記數(shù)法應(yīng)表示為( 。
A.4.995×1011B.49.95×1010
C.0.4995×1011D.4.995×1010
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖甲,點(diǎn)E為矩形ABCD邊AD上一點(diǎn),點(diǎn)P,Q同時(shí)從B點(diǎn)出發(fā),點(diǎn)P沿BE→ED→DC運(yùn)動(dòng)到點(diǎn)C停止,點(diǎn)Q沿BC運(yùn)動(dòng)到點(diǎn)C停止,它們的運(yùn)動(dòng)速度都是1cm/s,設(shè)P、Q出發(fā)t秒時(shí),△BPQ的面積為y(),已知y與t的函數(shù)關(guān)系的圖象如圖乙(曲線OM為拋物線的一部分),則下列結(jié)論:
①當(dāng)0<t≤5時(shí),y=;②tan∠ABE=;③點(diǎn)H的坐標(biāo)為(11,0);④△ABE與△QBP不可能相似.
其中正確的是 (把你認(rèn)為正確結(jié)論的序號(hào)都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠ACB=90°經(jīng)過(guò)點(diǎn)B的直線l(l不與直線AB重合)與直線BC的夾角等于∠ABC,分別過(guò)點(diǎn)C、A做直線l的垂線,垂足分別為點(diǎn)D、E.
(1)問題發(fā)現(xiàn):
①若∠ABC=30°,如圖①,則= ;
②∠ABC=45°,如圖②,則= ;
(2)拓展探究:
當(dāng)0°<∠ABC<90°,的值有無(wú)變化?請(qǐng)僅就圖③的情形給出證明.
(3)問題解決:
若直線CE、AB交于點(diǎn)F,=,CD=4,請(qǐng)直接寫出線段BD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com