【題目】如圖,AB是⊙O的弦,半徑OE⊥AB,P為AB的延長(zhǎng)線上一點(diǎn),PC與⊙O相切于點(diǎn)C,CE與AB交于點(diǎn)F.
(1)求證:PC=PF;
(2)連接OB,BC,若OB∥PC,BC=3,tanP=,求FB的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)FB=2.
【解析】
(1)連接OC,根據(jù)切線的性質(zhì)以及OE⊥AB,可知∠E+∠EFA=∠OCE+∠FCP=90°,從而可得∠EFA=∠FCP,繼而可推得∠CFP=∠FCP,再根據(jù)等角對(duì)等邊即可證得;
(2)過(guò)點(diǎn)B作BG⊥PC于點(diǎn)G,由OB∥PC,OB=OC,BC=3,從而求得OB=3,繼而證得四邊形OBGC是正方形,從而有OB=CG=BG=3,從而有,求得PG=4,再利用勾股定理可求得PB長(zhǎng),繼而可求出FB長(zhǎng).
(1)連接OC,
∵PC是⊙O的切線,
∴∠OCP=90°,
∵OE=OC,
∴∠E=∠OCE,
∵OE⊥AB,
∴∠E+∠EFA=∠OCE+∠FCP=90°,
∴∠EFA=∠FCP,
∵∠EFA=∠CFP,
∴∠CFP=∠FCP,
∴PC=PF;
(2)過(guò)點(diǎn)B作BG⊥PC于點(diǎn)G,
∵OB∥PC,
∴∠COB=90°,
∵OB=OC,BC=3,
∴OB=3,
∵BG⊥PC,
∴四邊形OBGC是正方形,
∴OB=CG=BG=3,
∵tanP=,
∴,
∴PG=4,
∴由勾股定理可知:PB=5,
∵PF=PC=7,
∴FB=PF﹣PB=7﹣5=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖是一個(gè)組合幾何體,右邊是它的兩種視圖,在右邊橫線上填寫出兩種視圖的名稱;
視圖 視圖
(2)根據(jù)兩種視圖中尺寸(單位:cm),計(jì)算這個(gè)組合幾何體的表面積.(π取3.14)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將坐標(biāo)原點(diǎn)O沿x軸向左平移2個(gè)單位長(zhǎng)度得到點(diǎn)A,過(guò)點(diǎn)A作y軸的平行線交反比例函數(shù)y=的圖象于點(diǎn)B,AB=.
(1)求反比例函數(shù)的解析式;
(2)若P(x1,y1)、Q(x2,y2)是該反比例函數(shù)圖象上的兩點(diǎn),且x1<x2時(shí),y1>y2,指出點(diǎn)P、Q各位于哪個(gè)象限?并簡(jiǎn)要說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,我國(guó)兩艘海監(jiān)船A,B在南海海域巡航,某一時(shí)刻,兩船同時(shí)收到指令,立即前往救援遇險(xiǎn)拋錨的漁船C,此時(shí),B船在A船的正南方向5海里處,A船測(cè)得漁船C在其南偏東45°方向,B船測(cè)得漁船C在其南偏東53°方向,已知A船的航速為30海里/小時(shí),B船的航速為25海里/小時(shí),問(wèn)C船至少要等待多長(zhǎng)時(shí)間才能得到救援?(參考數(shù)據(jù):sin 53°≈,cos 53°≈,tan 53°≈,≈1.41)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形AOBC的頂點(diǎn)O在原點(diǎn),邊AO,BO分別在x軸和y軸上,點(diǎn)C坐標(biāo)為(4,4),點(diǎn)D是BO的中點(diǎn),點(diǎn)P是邊OA上的一個(gè)動(dòng)點(diǎn),連接PD,以P為圓心,PD為半徑作圓,設(shè)點(diǎn)P橫坐標(biāo)為t,當(dāng)⊙P與正方形AOBC的邊相切時(shí),t的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知公路l上A、B兩點(diǎn)之間的距離為50m,小明要測(cè)量點(diǎn)C與河對(duì)岸邊公路l的距離,測(cè)得∠ACB=∠CAB=30°.點(diǎn)C到公路l的距離為( 。
A. 25m B. m C. 25m D. (25+25)m
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,∠ACB=90°,D是邊AB的中點(diǎn),P是邊AC上一動(dòng)點(diǎn),BP與CD相交于點(diǎn)E.
(1)如果BC=6,AC=8,且P為AC的中點(diǎn),求線段BE的長(zhǎng);
(2)聯(lián)結(jié)PD,如果PD⊥AB,且CE=2,ED=3,求cosA的值;
(3)聯(lián)結(jié)PD,如果BP2=2CD2,且CE=2,ED=3,求線段PD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為推進(jìn)我市生態(tài)文明建設(shè),某校在美化校園活動(dòng)中,設(shè)計(jì)小組想借助如圖所示的直角墻角(兩邊足夠長(zhǎng)),用30m長(zhǎng)的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=xm.
(1)若花園的面積為216m2,求x的值;
(2)若在P處有一棵樹(shù)與墻CD,AD的距離分別是17m和8m,要將這棵樹(shù)圍在花園內(nèi)(含邊界,不考慮樹(shù)的粗細(xì)),求花園面積S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)批發(fā)商銷售成本為20元/千克的某產(chǎn)品,根據(jù)物價(jià)部門規(guī)定:該產(chǎn)品每千克售價(jià)不得超過(guò)90元,在銷售過(guò)程中發(fā)現(xiàn)的售量y(千克)與售價(jià)x(元/千克)滿足一次函數(shù)關(guān)系,對(duì)應(yīng)關(guān)系如下表:
售價(jià)x(元/千克) | … | 50 | 60 | 70 | 80 | … |
銷售量y(千克) | … | 100 | 90 | 80 | 70 | … |
(1)求y與x的函數(shù)關(guān)系式;
(2)該批發(fā)商若想獲得4000元的利潤(rùn),應(yīng)將售價(jià)定為多少元?
(3)該產(chǎn)品每千克售價(jià)為多少元時(shí),批發(fā)商獲得的利潤(rùn)w(元)最大?此時(shí)的最大利潤(rùn)為多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com