【題目】如圖,四邊形ABCD是正方形,點(diǎn)E是邊BC的中點(diǎn),∠AEF=90°,且EF交正方形外角平分線CF于點(diǎn)F

1)求證:AE=EF;

2)如圖2,若把條件點(diǎn)E是邊BC的中點(diǎn)改為點(diǎn)E是邊BC上的任意一點(diǎn),其余條件不變,(1)中的結(jié)論是否仍然成立?  ;(填成立不成立);

3)如圖3,若把條件點(diǎn)E是邊BC的中點(diǎn)改為點(diǎn)E是邊BC延長線上的一點(diǎn),其余條件仍不變,那么結(jié)論AE=EF是否成立呢?若成立請證明,若不成立說明理由.

【答案】1)證明見解析;2)成立;(3)成立證明見解析.

【解析】試題分析:1)取AB中點(diǎn)M,連接EM,求出BM=BE,得出∠BME=45°,求出∠AME=ECF=135°,求出∠MAE=FEC,根據(jù)ASA推出AMEECF全等即可;

2)截取BE=BM,連接EM,求出AM=EC,得出∠BME=45°,求出∠AME=ECF=135°,求出∠MAE=FEC,根據(jù)ASA推出AMEECF全等即可;

3)在BA的延長線上取一點(diǎn)N,使AN=CE,連接NE,根據(jù)已知利用ASA判定ANE≌△ECF,因為全等三角形的對應(yīng)邊相等,所以AE=EF

試題解析:1)證明:取AB中點(diǎn)M,連接EM,

AB=BC,EBC中點(diǎn),MAB中點(diǎn),

AM=CE=BE,

∴∠BME=BME=45°,

∴∠AME=135°=ECF

∵∠B=90°,

∴∠BAE+AEB=90°

∵∠AEF=90°,

∴∠AEB+FEC=90°

∴∠BAE=FEC,

AMEECF中,

∴△AME≌△ECFASA),

AE=EF;

2)成立,

理由是:如圖,在AB上截取BM=BE,連接ME,

∵∠B=90°,

∴∠BME=BEM=45°

∴∠AME=135°=ECF

AB=BC,BM=BE,

AM=EC

AMEECF中,

∴△AME≌△ECFASA),

AE=EF;

3)成立.

證明:如圖,在BA的延長線上取一點(diǎn)N.使AN=CE,連接NE,

BN=BE,

∴∠N=NEC=45°,

CF平分∠DCG,

∴∠FCE=45°,

∴∠N=ECF,

∵四邊形ABCD是正方形,

ADBE

∴∠DAE=BEA,即∠DAE+90°=BEA+90°

∴∠NAE=CEF,

∴△ANE≌△ECFASA),

AE=EF

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a+b=5,ab=2,則(a﹣2)(3b﹣6)=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC和△ADC分別在AC的兩側(cè),∠BAC:∠B:∠ACB=4:3:2,且∠DAC=40°.
(1)試說明AD∥BC.
(2)若AB與CD也平行,求∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了鼓勵送彩電下鄉(xiāng),國家決定對購買彩電的農(nóng)戶實行政府補(bǔ)貼.規(guī)定每購買一臺彩電,政府補(bǔ)貼若干元,經(jīng)調(diào)查某商場銷售彩電臺數(shù)y(臺)與補(bǔ)貼款額x(元)之間大致滿足如圖所示的一次函數(shù)關(guān)系.隨著補(bǔ)貼款額x的不斷增大,銷售量也不斷增加,但每臺彩電的收益Z(元)會相應(yīng)降低且Z與x之間也大致滿足如圖所示的一次函數(shù)關(guān)系。

(1)在政府未出臺補(bǔ)貼措施前,該商場銷售彩電的總收益額為多少元?

(2)在政府補(bǔ)貼政策實施后,分別求出該商場銷售彩電臺數(shù)y和每臺家電的收益z與政府補(bǔ)貼款額x之間的函數(shù)關(guān)系式;

(3)要使該商場銷售彩電的總收益w(元)最大,政府應(yīng)將每臺補(bǔ)貼款額x定為多少并求出總收益w的最大值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售一種飲料,每瓶進(jìn)價為4元.經(jīng)市場調(diào)查表明,當(dāng)售價在5元到8元之間(含5元,8元)浮動時,每瓶售價每增加1元,日均銷售量減少40瓶;當(dāng)售價為每瓶為6元時,日均銷售量為120瓶.問:銷售價格定為每瓶多少元時,所得日均毛利潤(每瓶毛利潤=每瓶售價-每瓶進(jìn)價)最大?最大日均毛利潤為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象的對稱軸是直線x=2,且圖象過點(diǎn)(12),與一次函數(shù)y=x+m的圖象交于(0,-1).

求兩個函數(shù)解析式;

求兩個函數(shù)圖象的另一個交點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“愛我永州”中學(xué)生演講比賽中,五位評委分別給甲、乙兩位選手的評分如下:

甲:8、7、9、8、8

乙:7、9、6、9、9

則下列說法中錯誤的是(

A.甲、乙得分的平均數(shù)都是8

B.甲得分的眾數(shù)是8,乙得分的眾數(shù)是9

C.甲得分的中位數(shù)是9,乙得分的中位數(shù)是6

D.甲得分的方差比乙得分的方差小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)已知ABC和ADE是等腰直角三角形,ACB=ADE=90°,點(diǎn)F為BE中點(diǎn),連結(jié)DF、CF.

(1)如圖1, 當(dāng)點(diǎn)D在AB上,點(diǎn)E在AC上,請直接寫出此時線段DF、CF的數(shù)量關(guān)系位置關(guān)系(不證明);

(2)如圖2,在(1)的條件下ADE繞點(diǎn)A順時針旋轉(zhuǎn)45°時,請你判斷此時(1)中的結(jié)論是否仍然成立,并證明你的判斷

(3)如圖3,在(1)的條件下ADE繞點(diǎn)A順時針旋轉(zhuǎn)90°時,若AD=1,AC=,求此時線段CF的長(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若方程2(2x﹣1)=3x+1與關(guān)于x的方程2ax=(a+1)x-6的解相同,求a的值.

查看答案和解析>>

同步練習(xí)冊答案