【題目】如圖,EF∥AD,∠1=∠2,∠BAC=87°,求你∠AGD的度數(shù).
【答案】解:∵EF∥AD,
∴∠2=∠3,
∵∠1=∠2,
∴∠1=∠3,
∴AB∥DG(內(nèi)錯角相等,兩直線平行),
∴∠BAC+∠AGD=180°(兩直線平行,同旁內(nèi)角互補(bǔ)),
∵∠BAC=87°,
∴∠AGD=93°.
【解析】由平行線的性質(zhì)得∠2=∠3,又∠1=∠2,從而∠1=∠3,根據(jù)內(nèi)錯角相等,兩直線平行得出AB∥DG,再根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)得出∠AGD的度數(shù)。
【考點精析】掌握平行線的判定與性質(zhì)是解答本題的根本,需要知道由角的相等或互補(bǔ)(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(bǔ)(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的袋子里,有5個除顏色外,其他都相同的小球,其中有3個是紅球,2個是綠球,每次拿一個球然后放回去,拿2次,則至少有一次取到綠球的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A,B,C,D在同一條直線上,點E,F分別在直線AD的兩側(cè),且AE=DF,∠A=∠D,AB=DC.
(1)求證:四邊形BFCE是平行四邊形;
(2)若AD=10,DC=3,∠EBD=60°,則BE= 時,四邊形BFCE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC是等腰三角形,且∠A=40°,那么∠ACB的外角的度數(shù)是
A. 110° B. 140° C. 110°或140° D. 以上都不對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知2輛A型車和1輛B型車載滿貨物一次可運貨10噸.用1輛A型車和2輛B型車載滿貨物一次可運貨11噸.某物流公司現(xiàn)有31噸貨物,計劃同時租用A型車a輛和B型車b輛,一次運完,且每輛車都滿載貨物.根據(jù)以上信息解答下列問題:
(1)1輛A型車和1輛B型車載滿貨物一次分別可運貨物多少噸?
(2)請幫助物流公司設(shè)計租車方案
(3)若A型車每輛車租金每次100元,B型車每輛車租金每次120元.請選出最省錢的租車方案,并求出最少的租車費.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知菱形ABCD的對角線相交于O,點E,F(xiàn)分別在邊AB、BC上,且BE=BF,射線EO,F(xiàn)O分別交邊CD、AD于G,H.
(1)求證:四邊形EFGH為矩形;
(2)若OA=4,OB=3,求EG的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊ABCD中,AD=2AB,F是AD的中點,作CE⊥AB,垂足E在線段AB上,連接EF、CF,則下列結(jié)論中一定成立的是 (把所有正確結(jié)論的序號都填在橫線上)
(1)∠DCF=∠BCD,(2)EF=CF;(3)SΔBEC=2SΔCEF;(4)∠DFE=3∠AEF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD,頂點A(1,3)、B(1,1)、C(3,1),規(guī)定“把正方形ABCD先沿x軸翻折,再向左平移1個單位”為一次交換,如此這樣,連續(xù)經(jīng)過2 020次變換后,正方形ABCD的對角線交點M的坐標(biāo)變?yōu)?/span>_________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com