【題目】在下面16×8的正方形網(wǎng)格中,每個小正方形的邊長為1個單位,△ABC是格點三角形(頂點在網(wǎng)格交點處),請你畫出:
(1)△ABC的中心對稱圖形,A點為對稱中心;
(2)△ABC關(guān)于點P的位似△A′B′C′,且位似比為1:2;
(3)以A、B、C、D為頂點的所有格點平行四邊形ABCD的頂點D.
【答案】(1)如圖所示:△AED為所求作的三角形;見解析;(2)如圖所示:△A′B′C′為所求作的三角形;見解析;(3)如圖所示:D1,D2,D3為所求作的點;見解析.
【解析】
(1)由A為對稱中心,故A點不動,連接BA并延長,使AD=AB,連接CA并延長,使AE=AC,連接ED,三角形AED為三角形ABC關(guān)于A中心對稱的圖形,如圖所示;
(2)連接AP并延長,使A′P=2AP,連接BP并延長,使B′P=2BP,連接CP并延長,使C′P=2CP,連接A′B′,A′C′,B′C′,△A′B′C′為所求作的三角形;
(3)滿足題意的D點有3個,分別是以AB為對角線作出的平行四邊形ACBD1,以AC為對角線的平行四邊形ABCD2,以BC為對角線的平行四邊形ABD3C,如圖所示.
(1)如圖所示:△AED為所求作的三角形;
(2)如圖所示:△A′B′C′為所求作的三角形;
(3)如圖所示:D1,D2,D3為所求作的點.
科目:初中數(shù)學 來源: 題型:
【題目】某校開展了以“責任、感恩”為主題的班隊活動,活動結(jié)束后,初三(2)班數(shù)學興趣小組提出了5個主要觀點并在本班學生中進行了調(diào)查(要求每位同學只選自己最認可的一項觀點),并制成了如下扇形統(tǒng)計圖,
(1)該班有 人,學生選擇“和諧”觀點的有 人,在扇形統(tǒng)計圖中,“和諧”觀點所在扇形區(qū)域的圓心角是 度;
(2)如果該校有360名初三學生,利用樣本估計選擇“感恩”觀點的初三學生約有 人;
(3)如果數(shù)學興趣小組在這5個主要觀點中任選兩項觀點在全校學生中進行調(diào)查,求恰好選到“和諧”和“感恩”觀點的概率(用樹狀圖或列表法分析解答).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線的部分圖象如圖所示,與x軸的一個交點坐標為,拋物線的對稱軸是下列結(jié)論中:
;;方程有兩個不相等的實數(shù)根;拋物線與x軸的另一個交點坐標為;若點在該拋物線上,則.
其中正確的有
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知Rt△ABC中,∠ACB=90°,CA=CB=4,另有一塊等腰直角三角板的直角頂點放在C處,CP=CQ=2,將三角板CPQ繞點C旋轉(zhuǎn)(保持點P在△ABC內(nèi)部),連接AP、BP、BQ.
(1)如圖1求證:AP=BQ;
(2)如圖2當三角板CPQ繞點C旋轉(zhuǎn)到點A、P、Q在同一直線時,求AP的長;
(3)設(shè)射線AP與射線BQ相交于點E,連接EC,寫出旋轉(zhuǎn)過程中EP、EQ、EC之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點, 在反比例函數(shù)(m為常數(shù))的圖象上,連接AO并延長與圖象的另一支有另一個交點為點C,過點A的直線l與x軸的交點為點,過點C作CE∥x軸交直線l于點E.
(1)求m的值,并求直線l對應(yīng)的函數(shù)解析式;
(2)求點E的坐標;
(3)過點B作射線BN∥x軸,與AE交于點M (補全圖形),求證:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,平行四邊形的頂點在反比例函數(shù)()的圖象上,點在軸上,對角線軸,若兩點的橫坐標分別為1,2,的長為,則的值為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市射擊隊甲、乙兩名隊員在相同的條件下各射耙10次,每次射耙的成績情況如圖所示:
(1)請將下表補充完整:
(2)請從下列三個不同的角度對這次測試結(jié)果進行分析:
①從平均數(shù)和方差相結(jié)合看, 的成績好些;
②從平均數(shù)和中位數(shù)相結(jié)合看, 的成績好些;
③若其他隊選手最好成績在9環(huán)左右,現(xiàn)要選一人參賽,你認為選誰參加,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD和正方形DEFG中,點G在CD上,DE=2,將正方形DEFG繞點D順時針旋轉(zhuǎn)60°,得到正方形DE'F'G',此時點G'在AC上,連接CE',則CE'+CG'=______
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知拋物線y=﹣x2+bx+c交y軸于點A(0,4),交x軸于點B(4,0),點P是拋物線上一動點,過點P作x軸的垂線PQ,過點A作AQ⊥PQ于點Q,連接AP.
(1)填空:拋物線的解析式為 ,點C的坐標 ;
(2)點P在拋物線上運動,若△AQP∽△AOC,求點P的坐標;
(3)如圖2,當點P位于拋物線的對稱軸的右側(cè),若將△APQ沿AP對折,點Q的對應(yīng)點為點Q',請直接寫出當點Q'落在坐標軸上時點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com