【題目】如圖,在RtABC中,已知AC=3,BC=4,點MAB邊上的一個動點,∠DME的兩邊與折線A—C—B分別交于點D和點E(E在點D的右邊),且∠DME=A,若能使以點D,E,M為頂點的三角形與ABC相似的點D有三個,則AM的長度x的取值范圍是________.

【答案】

【解析】

當(dāng)CM⊥AB于點M,DM⊥AC于點D時,此時點C,E重合,根據(jù)已知條件易證△DCM∽△CAB∽△ACM,利用相似三角形的對應(yīng)邊成比例,可求出x的值,即可得到x的取值范圍;如圖,當(dāng)點MAB的中點,ME⊥BC于點E,點C、D重合,利用直角三角形斜邊的性質(zhì),可求出AM的長,同理可得到點D的另一個點,綜上所述,可得到x的取值范圍.

如圖,CM⊥AB于點M,DM⊥AC于點D,此時點C,E重合,

∴∠CDM=∠ACB=∠AMC=90°

∴∠DMC+∠ADM=90°,∠ADM+∠A=90°,

∴∠A=∠DME

∴△DCM∽△CAB∽△ACM,

Rt△ABC中,

解得,

∴0x;

如圖,當(dāng)點MAB的中點,ME⊥BC于點E,點C、D重合.

∵BC⊥AC

∴ME∥AC

∴∠CME=∠ACM

∵CMRt△ABC的中線,

∴CM=AM=BM= ,

∴∠A=∠ACM=∠CME

∴x=;

同理可得到點D的另一個點,此時

∴x的取值范圍為 <x<

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】連擲兩次骰子,它們的點數(shù)都是4的概率是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圖中的小方格都是邊長為1的正方形,ABCA、B、C三點坐標(biāo)為A(2,0)、B(2,2)、C(6,3)。

(1) 請在圖中畫出一個,使ABC是以坐標(biāo)原點為位似中心,相似比為2的位似圖形。

(2)求的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把一張邊長為10cm的正方形紙板的四周各剪去一個邊長為xcm的小正方形,再折疊成一個無蓋的長方體盒子.

1)當(dāng)長方體盒子的底面積為81cm2時,求所剪去的小正方形的邊長.

2)設(shè)所折疊的長方體盒子的側(cè)面積為S,求Sx的函數(shù)關(guān)系式,并寫出x的取值范圍.

3)長方體盒子的側(cè)面積為S的值能否是60cm2,若能,請求出x的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在PAB中,MNAB上兩點,PMN是等邊三角形,∠APM=∠B

1)求證:∠A=∠BPN;

2)求證:MN2AM·BN;

3)若APAM1,求線段MN,PB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=18,AD=12,點M是邊AB的中點,連結(jié)DM,DMAC交于點G,點EF分別是CDDG上的點,連結(jié)EF

(1)求證:CG=2AG.

(2)DE=6,當(dāng)以EF,D為頂點的三角形與CDG相似時,求EF的長.

(3)若點E從點D出發(fā),以每秒2個單位的速度向點C運動,點F從點G出發(fā),以每秒1個單位的速度向點D運動.當(dāng)一個點到達(dá),另一個隨即停止運動.在整個運動過程中,求四邊形CEFG的面積的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD的邊長是10,四個全等的小正方形的對稱中心分別在ABCD的頂點上,且它們的各邊與正方形ABCD各邊平行或垂直。若小正方形的邊長為x,且,陰影部分的面積為y,則能反映yx之間函數(shù)關(guān)系的大致圖形是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】贛縣田村素稱燈彩之鄉(xiāng),田村花燈源于唐代,盛于宋朝,迄今已有1300多年歷史了,某公司生產(chǎn)了一種田村花燈,每件田村花燈制造成本為20元.設(shè)銷售單價x(元),每日銷售量y(件)、每日的利潤w(元).在試銷過程中,每日銷售量y(件)、每日的利潤w(元)與銷售單價x(元)之間存在一定的關(guān)系,其幾組對應(yīng)量如下表所示:

銷售單價x(元)

30

31

32

40

銷售量y(件)

40

38

36

20

1)根據(jù)表中數(shù)據(jù)的規(guī)律、分別寫出每日銷售量y(件)、每日利潤w(元)關(guān)于銷售單價x(元)之間的函數(shù)表達(dá)式(利潤=(銷售單價﹣成本單價)×銷售件數(shù)).

2)當(dāng)銷售單價為多少元時,公司每日能夠獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象分別交x軸、y軸于C,D兩點,交反比例函數(shù)圖象于A4),B3m)兩點.

(1)求直線CD的表達(dá)式;

(2)E是線段OD上一點,若,求E點的坐標(biāo);

(3)請你根據(jù)圖象直接寫出不等式的解集.

查看答案和解析>>

同步練習(xí)冊答案