【題目】如圖,在平面直角坐標(biāo)系中,ABC的頂點坐標(biāo)分別為A(-2,2),B(-4,0),C(-4;-4),

(1)y軸右側(cè),以O為位似中心,畫出A'B'C′,使它與ABC的相似比為1:2;

(2)根據(jù)(1)的作圖,sinA'C'B′=__________.

【答案】(1)畫圖見解析;(2)

【解析】

(1)根據(jù)題意可得OA= 2OA' ,OB=2OB',OC=2OC′,再以原點O為位似中心求得點A',B',C′的坐標(biāo),然后描點連線即可;

(2)利用勾股定理得出各邊長,再利用銳角三角函數(shù)關(guān)系求出答案即可.

(1)根據(jù)題意可得A'(1,-1),B'(2,0),C′(2,2),

如圖

;

(2)如圖所示,

∵A'C′==,

∴sin∠A'C'B′==

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)課上學(xué)習(xí)了圓周角的概念和性質(zhì):頂點在圓上,兩邊與圓相交,同弧所對的圓周角相等,小明在課后繼續(xù)對圓外角和圓內(nèi)角進行了探究.

下面是他的探究過程,請補充完整:

定義概念:頂點在圓外,兩邊與圓相交的角叫做圓外角,頂點在圓內(nèi),兩邊與圓相交的角叫做圓內(nèi)角.如圖1,∠M所對的一個圓外角.

(1)請在圖2中畫出所對的一個圓內(nèi)角;

提出猜想

(2)通過多次畫圖、測量,獲得了兩個猜想:一條弧所對的圓外角______這條弧所對的圓周角;一條弧所對的圓內(nèi)角______這條弧所對的圓周角;(大于、等于小于”)

推理證明:

(3)利用圖1或圖2,在以上兩個猜想中任選一個進行證明;

問題解決

經(jīng)過證明后,上述兩個猜想都是正確的,繼續(xù)探究發(fā)現(xiàn),還可以解決下面的問題.

(4)如圖3,F,H是∠CDE的邊DC上兩點,在邊DE上找一點P使得∠FPH最大.請簡述如何確定點P的位置.(寫出思路即可,不要求寫出作法和畫圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】作出反比例函數(shù)y=-的圖象,并結(jié)合圖象回答:(1)當(dāng)x2時,y的值;(2)當(dāng)1x≤4時,y的取值范圍;(3)當(dāng)1≤y4時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是置于水平地面上的一個球形儲油罐,小敏想測量它的半徑、在陽光下,他測得球的影子的最遠(yuǎn)點A到球罐與地面接觸點B的距離是10(如示意圖,AB10);同一時刻,他又測得豎直立在地面上長為1米的竹竿的影子長為2米,那么,球的半徑是________米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,ADBC,ABBC,BC=5,CD=6,DCB=60°,等邊PMN(N為固定點)的邊長為x,邊MN在直線BC上,NC=8.將直角梯形ABCD繞點C按逆時針方向旋轉(zhuǎn)到①的位置,再繞點D1按逆時針方向旋轉(zhuǎn)到②的位置,如此旋轉(zhuǎn)下去.

(1)將直角梯形按此方法旋轉(zhuǎn)四次,如果等邊PMN的邊長為x≥5+3,求梯形與等邊三角形的重疊部分的面積;

(2)將直角梯形按此方法旋轉(zhuǎn)三次,如果梯形與等邊三角形的重疊部分的面積是,求等邊PMN的邊長x的范圍.

(3)將直角梯形按此方法旋轉(zhuǎn)三次,如果梯形與等邊三角形的重疊部分的面積是梯形面積的一半,求等邊PMN的邊長x.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的頂點坐標(biāo)分別為A(-2,2),B(-4,0),C(-4;-4),

(1)y軸右側(cè),以O為位似中心,畫出A'B'C′,使它與ABC的相似比為1:2;

(2)根據(jù)(1)的作圖,sinA'C'B′=__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,MN表示一段筆直的高架道路,線段AB表示高架道路旁的一排居民樓,已知點A到MN的距離為15米,BA的延長線與MN相交于點D,且∠BDN=30°,假設(shè)汽車在高速道路上行駛時,周圍39米以內(nèi)會受到噪音(XRS)的影響.

(1)過點A作MN的垂線,垂足為點H,如果汽車沿著從M到N的方向在MN上行駛,當(dāng)汽車到達(dá)點P處時,噪音開始影響這一排的居民樓,那么此時汽車與點H的距離為多少米?

(2)降低噪音的一種方法是在高架道路旁安裝隔音板,當(dāng)汽車行駛到點Q時,它與這一排居民樓的距離QC為39米,那么對于這一排居民樓,高架道路旁安裝的隔音板至少需要多少米長?(精確到1米)(參考數(shù)據(jù):≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,點D在邊BC上,∠DABB,點E在邊AC上,滿足AE·CDAD·CE.

(1)求證:DEAB

(2)如果點FDE延長線上一點,且BDDFAB的比例中項,連接AF.求證:DFAF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在x軸的正半軸上依次間隔相等的距離取點A1,A2,A3,A4,…,An,分別過這些點做x軸的垂線與反比例函數(shù)y的圖象相交于點P1,P2P3,P4,…Pn,再分別過P2P3,P4,…PnP2B1A1P1,P3B2A2P2,P4B3A3P3,…,PnBn1An1Pn1,垂足分別為B1B2,B3,B4,…,Bn1,連接P1P2,P2P3,P3P4,…,Pn1Pn,得到一組RtP1B1P2,RtP2B2P3,RtP3B3P4,…,RtPn1Bn1Pn,則RtPn1Bn1Pn的面積為_____

查看答案和解析>>

同步練習(xí)冊答案