如圖,在平面直角坐標(biāo)系中,直線y=-2x+42交x軸于點(diǎn)A,交直線y=x于點(diǎn)B,拋物線y=ax2-2x+c分別交線段AB、OB于點(diǎn)C、D,點(diǎn)C和點(diǎn)D的橫坐標(biāo)分別為16和4,點(diǎn)P在這條拋物線上.
(1)求點(diǎn)C、D的縱坐標(biāo).
(2)求a、c的值.
(3)若Q為線段OB上一點(diǎn),P、Q兩點(diǎn)的縱坐標(biāo)都為5,求線段PQ的長(zhǎng).
(4)若Q為線段OB或線段AB上一點(diǎn),PQ⊥x軸,設(shè)P、Q兩點(diǎn)間的距離為d(d>0),點(diǎn)Q的橫坐標(biāo)為m,直接寫出d隨m的增大而減小時(shí)m的取值范圍.[參考公式:二次函數(shù)y=ax2+bx+c(a≠0)圖象的頂點(diǎn)坐標(biāo)為(-
b
2a
4ac-b2
4a
)].
(1)∵點(diǎn)C在直線AB:y=-2x+42上,且C點(diǎn)的橫坐標(biāo)為16,
∴y=-2×16+42=10,即點(diǎn)C的縱坐標(biāo)為10;
∵D點(diǎn)在直線OB:y=x上,且D點(diǎn)的橫坐標(biāo)為4,
∴點(diǎn)D的縱坐標(biāo)為4;

(2)由(1)知點(diǎn)C的坐標(biāo)為(16,10),點(diǎn)D的坐標(biāo)為(4,4),
∵拋物線y=ax2-2x+c經(jīng)過C、D兩點(diǎn),
256a-32+c=10
16a-8+c=4
,
解得:a=
1
8
,c=10,
∴拋物線的解析式為y=
1
8
x2-2x+10;

(3)∵Q為線段OB上一點(diǎn),縱坐標(biāo)為5,
∴Q點(diǎn)的橫坐標(biāo)也為5,
∵點(diǎn)P在拋物線上,縱坐標(biāo)為5,
1
8
x2-2x+10=5,
解得x1=8+2
6
,x2=8-2
6
,
當(dāng)點(diǎn)P的坐標(biāo)為(8+2
6
,5),點(diǎn)Q的坐標(biāo)為(5,5),線段PQ的長(zhǎng)為2
6
+3,
當(dāng)點(diǎn)P的坐標(biāo)為(8-2
6
,5),點(diǎn)Q的坐標(biāo)為(5,5),線段PQ的長(zhǎng)為2
6
-3.
所以線段PQ的長(zhǎng)為2
6
+3或2
6
-3.

(4)根據(jù)題干條件:PQ⊥x軸,可知P、Q兩點(diǎn)的橫坐標(biāo)相同,
拋物線y=
1
8
x2-2x+10=
1
8
(x-8)2+2的頂點(diǎn)坐標(biāo)為(8,2),
聯(lián)立
y=x
y=-2x+42
,解得點(diǎn)B的坐標(biāo)為(14,14),
①當(dāng)點(diǎn)Q為線段OB上時(shí),如圖所示,當(dāng)0≤m<4時(shí),d隨m的增大而減小,
在BD段,d=x-(
1
8
x2-2x+10),
即d=-
1
8
x2+3x-10,對(duì)稱軸是x=12,
當(dāng)x≥12時(shí),d隨x的增大而減。
故當(dāng)12≤m≤14時(shí),d隨m的增大而減小.
則當(dāng)0≤m<4或12≤m≤14時(shí),d隨m的增大而減;
②當(dāng)點(diǎn)Q為線段AB上時(shí),如圖所示,當(dāng)14≤m<16時(shí),d隨m的增大而減小,
綜上所述,當(dāng)0≤m<4或12≤m<16時(shí),d隨m的增大而減。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y=ax2+bx+c的頂點(diǎn)為A(3,-3),與x軸的一個(gè)交點(diǎn)為B(1,0).
(1)求拋物線的解析式.
(2)P是y軸上一個(gè)動(dòng)點(diǎn),求使P到A、B兩點(diǎn)的距離之和最小的點(diǎn)P0的坐標(biāo).
(3)設(shè)拋物線與x軸的另一個(gè)交點(diǎn)為C.在拋物線上是否存在點(diǎn)M,使得△MBC的面積等于以點(diǎn)A、P0、B、C為頂點(diǎn)的四邊形面積的三分之一?若存在,請(qǐng)求出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,如圖,在平面直角坐標(biāo)系中,Rt△ABC的斜邊BC在x軸上,直角頂點(diǎn)A在y軸的正半軸上,A(0,2),B(-1,0).
(1)求點(diǎn)C的坐標(biāo);
(2)求過A、B、C三點(diǎn)的拋物線的解析式和對(duì)稱軸;
(3)設(shè)點(diǎn)P(m,n)是拋物線在第一象限部分上的點(diǎn),△PAC的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并求使S最大時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,O是原點(diǎn),A、B、C三點(diǎn)的坐標(biāo)分別為A(18,0),B(18,6),C(8,6),四邊形OABC是梯形,點(diǎn)P、Q同時(shí)從原點(diǎn)出發(fā),分別做勻速運(yùn)動(dòng),其中點(diǎn)P沿OA向終點(diǎn)A運(yùn)動(dòng),速度為每秒1個(gè)單位,點(diǎn)Q沿OC、CB向終點(diǎn)B運(yùn)動(dòng),當(dāng)這兩點(diǎn)有一點(diǎn)到達(dá)自己的終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).
(1)求出直線OC的解析式及經(jīng)過O、A、C三點(diǎn)的拋物線的解析式.
(2)試在(1)中的拋物線上找一點(diǎn)D,使得以O(shè)、A、D為頂點(diǎn)的三角形與△AOC全等,請(qǐng)直接寫出點(diǎn)D的坐標(biāo).
(3)設(shè)從出發(fā)起,運(yùn)動(dòng)了t秒.如果點(diǎn)Q的速度為每秒2個(gè)單位,試寫出點(diǎn)Q的坐標(biāo),并寫出此時(shí)t的取值范圍.
(4)設(shè)從出發(fā)起,運(yùn)動(dòng)了t秒.當(dāng)P、Q兩點(diǎn)運(yùn)動(dòng)的路程之和恰好等于梯形OABC的周長(zhǎng)的一半,這時(shí),直線PQ能否把梯形的面積也分成相等的兩部分?如有可能,請(qǐng)求出t的值;如不可能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線y=-
3
4
x2+
9
4
x+3與x軸交于A、B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C.
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)求直線BC的函數(shù)解析式;
(3)點(diǎn)P是直線BC上的動(dòng)點(diǎn),若△POB為等腰三角形,請(qǐng)寫出此時(shí)點(diǎn)P的坐標(biāo).(可直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在同一直角坐標(biāo)系內(nèi),如果x軸與一次函數(shù)y=kx+4的圖象以及分別過C(1,0)、D(4,0)兩點(diǎn)且平行于y軸的兩條直線所圍成的圖形ABDC的面積為7.
(1)求k的值;
(2)求過F、C、D三點(diǎn)的拋物線的解析式;
(3)線段CD上的一個(gè)動(dòng)點(diǎn)P從點(diǎn)D出發(fā),以1單位/秒的速度沿DC的方向移動(dòng)(點(diǎn)P不重合于點(diǎn)C),過P點(diǎn)作直線PQ⊥CD交EF于Q.當(dāng)P從點(diǎn)D出發(fā)t秒后,求四邊形PQFC的面積S與t之間的函數(shù)關(guān)系式,并確定t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,用一段長(zhǎng)為30m的籬笆圍出一個(gè)一邊靠墻的矩形菜園,墻長(zhǎng)為18m.設(shè)矩形的一邊長(zhǎng)為xm,面積為ym2
(1)求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)菜園的面積能否達(dá)到120m2?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在城市繁華中心地帶的商鋪內(nèi),放置統(tǒng)一尺寸大小的“格子柜”,任何人只需每月支付一定的費(fèi)用,就可以租用一個(gè)柜子寄賣自己的物品,相當(dāng)于擁有自己的一個(gè)“迷你實(shí)體店”,“格子店”以投入少、易操作為特點(diǎn),吸引著眾多淘寶店家.
張阿姨有格子柜40個(gè),當(dāng)每個(gè)格子柜的月租金為270元時(shí),恰好全部租出.在此基礎(chǔ)上,當(dāng)每個(gè)格子柜的月租金提高10元時(shí),格子柜就少租出一個(gè),且沒有租出的一個(gè)格子柜每月需支出費(fèi)用20元,設(shè)每個(gè)格子柜的月租金為x(x≥270)元,月收益為y元(總收益=格子柜租金收入-未租出格子柜支出費(fèi)用)
(1)求y關(guān)于x的函數(shù)關(guān)系;
(2)當(dāng)月租金分別為300元和350元時(shí),張阿姨的月收益分別是多少元?可以出租多少個(gè)格子柜?請(qǐng)你簡(jiǎn)單說明理由;
(3)若張阿姨某月出租格子柜的總收益為11100元,則她這個(gè)月出租了多少個(gè)格子柜?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

問題情境
已知矩形的面積為a(a為常數(shù),a>0),當(dāng)該矩形的長(zhǎng)為多少時(shí),它的周長(zhǎng)最?最小值是多少?
數(shù)學(xué)模型
設(shè)該矩形的長(zhǎng)為x,周長(zhǎng)為y,則y與x的函數(shù)關(guān)系式為y=2(x+
a
x
)(x>0)

探索研究
(1)我們可以借鑒學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),先探索函數(shù)y=x+
1
x
(x>0)
的圖象性質(zhì).
1填寫下表,畫出函數(shù)的圖象:
x
1
4
1
3
1
2
1234
y
②觀察圖象,寫出該函數(shù)兩條不同類型的性質(zhì);
③在求二次函數(shù)y=ax2+bx+c(a≠0)的最大(。┲禃r(shí),除了通過觀察圖象,除了通過觀察圖象,還可以通過配方得到.同樣通過配方也可以求函數(shù)y=x+
1
x
(x>0)的最小值.y=x+
1
x
=(
x
)2+(
1
x
)2
=(
x
)2+(
1
x
)2-2
x
1
x
+2
x
1
x

=(
x
-
1
x
)2+2
≥2
當(dāng)
x
-
1
x
=0,即x=1時(shí),函數(shù)y=x+
1
x
(x>0)的最小值為2.
解決問題
(2)解決“問題情境”中的問題,直接寫出答案.

查看答案和解析>>

同步練習(xí)冊(cè)答案