【題目】如圖,矩形AOBC,A(0,3)、B(5,0),點(diǎn)E在OB上,∠AEO=45°,點(diǎn)P從點(diǎn)Q(﹣3,0)出發(fā),沿x軸向右以每秒1個(gè)單位長的速度運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t (t≥0)秒.
(1)求點(diǎn)E的坐標(biāo);
(2)當(dāng)∠PAE=15°時(shí),求t的值;
(3)以點(diǎn)P為圓心,PA為半徑的⊙P隨點(diǎn)P的運(yùn)動(dòng)而變化,當(dāng)⊙P與四邊形AEBC的邊(或邊所在的直線)相切時(shí),求t的值.
【答案】(1)點(diǎn)E的坐標(biāo)為(3,0);
(2)t=(3+)s或(3+3)s;
(3)t=0或4或4.6秒時(shí),⊙P與四邊形AEBC的邊(或邊所在的直線)相切.
【解析】
試題分析:(1)在Rt△AOE中求出OE,即可得出點(diǎn)E的坐標(biāo);
(2)如圖1所示,當(dāng)∠PAE=15°時(shí),可得∠APO=60°,從而可求出PO=,求出QP,即可得出t的值;
(3)以點(diǎn)P為圓心,PA為半徑的⊙P與四邊形AEBC的邊(或邊所在的直線)相切時(shí),只有一種情況,也就是⊙P與AE邊相切,且切點(diǎn)為點(diǎn)A,如圖2所示,求出PE,得出QP,繼而可得t的值.
試題解析:(1)在Rt△AOE中,OA=3,∠AEO=45°,
∴OE=AO=3,
∴點(diǎn)E的坐標(biāo)為(3,0);
(2)如圖1所示:
∵∠PAE=15°,∠AEO=45°,
∴∠APO=∠PAE+∠AEO=60°,
∴OP=AOtan30°=,
∴QP=3+,
∴t=3+(秒);
如圖2,∵∠AEO=45°,∠PAE=15°,
∴∠APE=30°,
∵AO=3,
∴OP=3÷=3,
∴t=QP=OQ+OP=(3+3)s;
∴t=(3+)s或(3+3)s.
(3)∵PA是⊙P的半徑,且⊙P與AE相切,
∴點(diǎn)A為切點(diǎn),如圖3所示:
∵AO=3,∠AEO=45°,
∴AE=3
∴PE=
∴QP=QE﹣PE=6﹣6=0,
∴當(dāng)⊙P與四邊形AEBC的邊AE相切時(shí),Q,P重合,t的值為0.
∵PA是⊙P的半徑,且⊙P與AE相切,
∴點(diǎn)A為切點(diǎn),如圖4所示:
當(dāng)點(diǎn)P與O重合時(shí),⊙P與AC相切,
∴t=3秒;
當(dāng)PA=PB時(shí),⊙P與BC相切,
設(shè)OP=x,則PB=PA=5﹣x,
在Rt△OAP中,x2+32=(5﹣x)2,
解得:x=1.6,
∴t=3+1.6=4.6(秒);
∴t=0或4或4.6秒時(shí),⊙P與四邊形AEBC的邊(或邊所在的直線)相切.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是的中點(diǎn),CE⊥AB于E,BD交CE于點(diǎn)F.
(1)求證:CF﹦BF;
(2)若CD﹦6,AC﹦8,則⊙O的半徑為 ,CE的長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)橫截面為Rt△ABC的物體,∠ACB=90°,∠CAB=30°,BC=1m,工人師傅要把此物體搬到墻邊,先將AB邊放在地面(直線l)上,再按順時(shí)針方向繞點(diǎn)B翻轉(zhuǎn)到△A1BC1的位置(BC1在l上),最后沿射線BC1的方向平移到△A2B2C2的位置,其平移的距離為線段AC的長度(此時(shí)A2C2恰好靠在墻邊).
(1)請直接寫出AB= ,AC= ;
(2)畫出在搬動(dòng)此物體的整個(gè)過程中A點(diǎn)所經(jīng)過的路徑,并求出該路徑的長度.
(3)設(shè)O、H分別為邊AB、AC的中點(diǎn),在將△ABC繞點(diǎn)B順時(shí)針方向翻轉(zhuǎn)到△A1BC1的位置這一過程中,求線段OH所掃過部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】巴黎與東京的時(shí)差為-8,帶正號的數(shù)表示同一時(shí)間比東京早的時(shí)間數(shù).如果東京現(xiàn)在的時(shí)間是13:20.那么巴黎現(xiàn)在的時(shí)間是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面直角坐標(biāo)系中有6個(gè)點(diǎn):
A(1,1),B(﹣3,﹣1),C(﹣3,1),D(﹣2,﹣2),E(﹣2,﹣3),F(xiàn)(0,﹣4).
(1)畫出△ABC的外接圓⊙P,則點(diǎn)D與⊙P的位置關(guān)系 ;
(2)△ABC的外接圓的半徑= ,△ABC的內(nèi)切圓的半徑= .
(3)若將直線EF沿y軸向上平移,當(dāng)它經(jīng)過點(diǎn)D時(shí),設(shè)此時(shí)的直線為l1.判斷直線l1與⊙P的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,菱形ABCD的頂點(diǎn)A、B在x軸上,點(diǎn)A在點(diǎn)B的左側(cè),點(diǎn)D在y軸的正半軸上,∠BAD=60°,點(diǎn)A的坐標(biāo)為(﹣2,0).
(1)求C點(diǎn)的坐標(biāo);
(2)求直線AC的函數(shù)關(guān)系式;
(3)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長度的速度,按照A→D→C→B→A的順序在菱形的邊上勻速運(yùn)動(dòng)一周,設(shè)運(yùn)動(dòng)時(shí)間為t秒.求t為何值時(shí),以點(diǎn)P為圓心、以1為半徑的圓與對角線AC相切?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在10×10的正方形網(wǎng)格中,每個(gè)小正方形的邊長都為1,網(wǎng)格中有一個(gè)格點(diǎn)△ABC(即三角形的頂點(diǎn)都在格點(diǎn)上).
(1)在圖中作出△ABC關(guān)于直線l對稱的△A1B1C1;(要求:A與A1,B與B1,C與C1相對應(yīng))
(2)在(1)問的結(jié)果下,連接BB1,CC1,求四邊形BB1C1C的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB=30°,點(diǎn)P在∠AOB的內(nèi)部,P1與P關(guān)于OA對稱,P2與P關(guān)于OB對稱,則△P1OP2是
A. 含30°角的直角三角形 B. 頂角是30的等腰三角形
C. 等邊三角形 D. 等腰直角三角形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com