【題目】若平面直角坐標(biāo)系中的點(diǎn)作如下平移:沿x軸方向平移的數(shù)量為a(向右為正,向左為負(fù),平移|a|個(gè)單位),沿y軸方向平移的數(shù)量為b(向上為正,向下為負(fù),平移|b|個(gè)單位),則把有序數(shù)對(duì){a,b}叫做這一平移的“平移量”.規(guī)定“平移量”{a,b}與“平移量”{c,d}的加法運(yùn)算法則為{a,b}+{c,d}={a+c,b+d}.
(1)若動(dòng)點(diǎn)P從坐標(biāo)點(diǎn)M(1,1)出發(fā),按照“平移量”{2,0}平移到N,再按照“平移量”{1,2}平移到G,形成△MNG,則點(diǎn)N的坐標(biāo)為 , 點(diǎn)G的坐標(biāo)為 .
(2)若動(dòng)點(diǎn)P從坐標(biāo)原點(diǎn)出發(fā),先按照“平移量”m平移到B,再按照“平移量”n平移到C;最后按照“平移量”q平移回到點(diǎn)O.當(dāng)△OBC∽△MNG(在(1)中的三角形).且相似比為2:1時(shí),請(qǐng)你直接寫出“平移量”m , n , q .
(3)在(1)、(2)的前提下,請(qǐng)你在平面直角坐標(biāo)系中畫出△OBC與△MNG.
【答案】
(1)(3,1);(4,3)
(2){4,0}或{4,0}或{﹣4,0}或{﹣4,0};{2,4}或{2,﹣4}或{﹣2,4}或{2,4};{﹣6,﹣4}或{﹣6,4}或{6,4}或{6,﹣4}
(3)
解:如圖所示△OB1C1,△OB1C2,△OB2C3,△OB2C4都滿足條件.
【解析】解:(1)動(dòng)點(diǎn)P從坐標(biāo)點(diǎn)M(1,1)出發(fā),按照“平移量”{2,0}平移到N,再按照“平移量”{1,2}平移到G,形成△MNG,則點(diǎn)N的坐標(biāo)為 (3,1),點(diǎn)G的坐標(biāo)為 (4,3),所以答案是(3,1),(4,3).
(2)△OBC∽△MNG(在(1)中的三角形).且相似比為2:1時(shí),①當(dāng)△OB1C1∽△MNG時(shí),m{4,0},n{2,4},q{﹣6,﹣4},②當(dāng)△OB1C2∽△MNG時(shí),m{4,0},n{2,﹣4},q{﹣6,4},③當(dāng)△OB2C3∽△MNG時(shí),m{﹣4,0},n{﹣2,4},q{6,4},④當(dāng)△OB2C4∽△MNG時(shí),m{﹣4,0},n{2,4},q{6,﹣4},所以答案是{4,0}或{4,0}或{﹣4,0}或{﹣4,0};{2,4}或{2,﹣4}或{﹣2,4}或{2,4};{﹣6,﹣4}或{﹣6,4}或{6,4}或{6,﹣4}.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解平移的性質(zhì)的相關(guān)知識(shí),掌握①經(jīng)過平移之后的圖形與原來的圖形的對(duì)應(yīng)線段平行(或在同一直線上)且相等,對(duì)應(yīng)角相等,圖形的形狀與大小都沒有發(fā)生變化;②經(jīng)過平移后,對(duì)應(yīng)點(diǎn)所連的線段平行(或在同一直線上)且相等,以及對(duì)相似三角形的性質(zhì)的理解,了解對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解一元二次方程x2-2x-5=0,結(jié)果正確的是( 。
A.x1=-1+ ,x2=-1-
B.x1=1+ ,x2=1-
C.x1=7,x2= 5
D.x1= 1+ ,x2=1-
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AB=AC,∠A=30°,以B為圓心,BC長(zhǎng)為半徑畫弧,分別交AC,AB于D,E兩點(diǎn),并連結(jié)BD,DE. 則∠BDE的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)H在⊙O上,E是 的中點(diǎn),過點(diǎn)E作EC⊥AH,交AH的延長(zhǎng)線于點(diǎn)C.連接AE,過點(diǎn)E作EF⊥AB于點(diǎn)F.
(1)求證:CE是⊙O的切線;
(2)若FB=2,tan∠CAE= ,求OF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在反比例函數(shù)y= (x>0)的圖象上,有點(diǎn)P1 , P2 , P3 , P4…Pn(n為正整數(shù),且n≥1).它們的橫坐標(biāo)依次為1,2,3,4…n(n為正整數(shù),且n≥1),分別過這些點(diǎn)作x軸與y軸的垂線,連接相鄰兩點(diǎn),圖中所構(gòu)成的陰影部分的面積從左到右依次為S1 , S2 , S3…Sn﹣1(n為正整數(shù),且n≥2),那么S2+S3+S4+…S7= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】CPI指居民消費(fèi)價(jià)格指數(shù),反映居民家庭購(gòu)買消費(fèi)商品及服務(wù)的價(jià)格水平的變動(dòng)情況.CPI的漲跌率在一定程度受到季節(jié)性因素和天氣因素的影響.根據(jù)北京市2015年與2016年CPI漲跌率的統(tǒng)計(jì)圖中的信息,請(qǐng)判斷2015年1~8月份與2016年1~8月份,同月份比較CPI漲跌率下降最多的月份是月;請(qǐng)根據(jù)圖中提供的信息,預(yù)估北京市2016年第四季度CPI漲跌率變化趨勢(shì)是 , 你的預(yù)估理由是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小華在研究函數(shù)y1=x與y2=2x圖象關(guān)系時(shí)發(fā)現(xiàn):如圖所示,當(dāng)x=1時(shí),y1=1,y2=2;當(dāng)x=2時(shí),y1=2,y2=4;…;當(dāng)x=a時(shí),y1=a,y2=2a.他得出如果將函數(shù)y1=x圖象上各點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉淼?倍,就可以得到函數(shù)y2=2x的圖象.類比小華的研究方法,解決下列問題:
(1)如果函數(shù)y=3x圖象上各點(diǎn)橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉淼?倍,得到的函數(shù)圖象的表達(dá)式為;
(2)①將函數(shù)y=x2圖象上各點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉淼?/span>倍,得到函數(shù)y=4x2的圖象; ②將函數(shù)y=x2圖象上各點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?倍,得到圖象的函數(shù)表達(dá)式為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△PAB中,∠APB=120°,M,N是AB上兩點(diǎn),且△PMN是等邊三角形,求證:BMPA=PNBP.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】咸寧市某中學(xué)為了解本校學(xué)生對(duì)新聞、體育、動(dòng)畫、娛樂四類電視節(jié)目的喜愛情況,隨機(jī)抽取了部分學(xué)生進(jìn)行問卷調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如圖所示的兩幅不完整統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中信息解答下列問題:
(1)補(bǔ)全條形統(tǒng)計(jì)圖,“體育”對(duì)應(yīng)扇形的圓心角是度;
(2)根據(jù)以上統(tǒng)計(jì)分析,估計(jì)該校2000名學(xué)生中喜愛“娛樂”的有人;
(3)在此次問卷調(diào)查中,甲、乙兩班分別有2人喜愛新聞節(jié)目,若從這4人中隨機(jī)抽取2人去參加“新聞小記者”培訓(xùn),請(qǐng)用列表法或畫樹狀圖的方法求所抽取的2人來自不同班級(jí)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com