【題目】如圖,直線y=x+2與拋物線y=ax2+bx+6a≠0)相交于A)和B4,m),點P是線段AB上異于A、B的動點,過點PPC⊥x軸于點D,交拋物線于點C

1)求拋物線的解析式;

2)是否存在這樣的P點,使線段PC的長有最大值,若存在,求出這個最大值;若不存在,請說明理由;

3)求PAC為直角三角形時點P的坐標.

【答案】解:(1∵B4,m)在直線y=x+2

∴m=6,B(46)

∵AB4,6)在拋物線

解得

拋物線的解析式;

2)存在.

設(shè)動點P的坐標為(n,n+2),點C的坐標為(n,2n2-8n+6),

∴PC=n+2-2n2-8n+6),

=-2n2+9n-4,

=-2n-+

∵-20,

n=時,線段PC最大且為

【解析】試題分析:(1)已知B4m)在直線y=x+2上,可求得m的值,拋物線圖象上的A、B兩點坐標,可將其代入拋物線的解析式中,通過聯(lián)立方程組即可求得待定系數(shù)的值.

2)要弄清PC的長,實際是直線AB與拋物線函數(shù)值的差.可設(shè)出P點橫坐標,根據(jù)直線AB和拋物線的解析式表示出PC的縱坐標,進而得到關(guān)于PCP點橫坐標的函數(shù)關(guān)系式,根據(jù)函數(shù)的性質(zhì)即可求出PC的最大值.

3)當△PAC為直角三角形時,根據(jù)直角頂點的不同,有三種情形,需要分類討論,分別求解.

試題解析:(1∵B4m)在直線y=x+2上,

∴m=4+2=6,

∴B4,6),

A, )、B4,6)在拋物線y= +bx+6上,

,解得,

拋物線的解析式為y=﹣8x+6;

2)設(shè)動點P的坐標為(n,n+2),則C點的坐標為(n, ﹣8n+6),

PC=n+2﹣8n+6),

=﹣+9n﹣4,

=,

∵PC0

n=時,線段PC最大值為

3∵△PAC為直角三角形,

i)若點P為直角頂點,則∠APC=90°

由題意易知,PC∥y軸,∠APC=45°,因此這種情形不存在;

ii)若點A為直角頂點,則∠PAC=90°

如答圖3﹣1,過點A, )作ANx軸于點N,則ON=,AN=

過點AAM⊥直線AB,交x軸于點M,則由題意易知,△AMN為等腰直角三角形,

MN=AN=,OM=ON+MN=+=3

∴M3,0).

設(shè)直線AM的解析式為:y=kx+b,

則: ,解得,

直線AM的解析式為:y=﹣x+3①,

又拋物線的解析式為:y=﹣8x+6,

聯(lián)立①②式,解得:x=3x=(與點A重合,舍去),

∴C3,0),即點C、M點重合.

x=3時,y=x+2=5,

35);

iii)若點C為直角頂點,則∠ACP=90°

y=﹣8x+6=,

拋物線的對稱軸為直線x=2

如答圖3﹣2,作點A, )關(guān)于對稱軸x=2的對稱點C

則點C在拋物線上,且C, ).

x=時,y=x+2=

, ).

3,5)、)均在線段AB上,

綜上所述,PAC為直角三角形時,點P的坐標為(35)或(, ).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若a的相反數(shù)是﹣3,則a的值為( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列長度的三條線段,能組成三角形的是( )

A. 1cm1cm,3cmB. 2cm,3cm,5cm

C. 3cm,4cm,5cmD. 2cm,6cm,9cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AC⊥BC,BD⊥AD,AC BD 交于O,AC=BD.

求證:(1)BC=AD;

(2)△OAB是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以直線x1為對稱軸的拋物線yax2bxc(a,b,c為常數(shù))經(jīng)過A(40)B(0,4)兩點,其頂點為C.

(1)求該拋物線的表達式及其頂點C的坐標;

(2)若點M是拋物線上的一個動點,且位于第一象限內(nèi).

①設(shè)△ABM的面積為S,試求S的最大值;

②若S為整數(shù),則這樣的M點有

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請先仔細閱讀下列要求,然后解答相關(guān)問題.

(1)請補全以下求一元二次不等式-2x24x≥0的解集的過程;

①構(gòu)造函數(shù),畫出圖象:根據(jù)不等式特征構(gòu)造二次函數(shù)y=-2x24x;并在平面直角坐標系中(如圖)畫出二次函數(shù)y=-2x24x的圖象(只畫出草圖即可);

②求得界點,標示所需:當y0時,求得方程-2x24x0的解為 ;不等式-2x24x≥0的解集即為函數(shù)值y≥0時所對應(yīng)的自變量x的取值范圍;

③借助圖象,寫出解集;由所標示圖象,可得不等式-2x24x≥0的解集為

(2)請你利用(1)中求不等式解集的方法和步驟,①直接寫出一元二次不等式x26x3<10的解集為

②直接寫出一元二次不等式x23x>1的解集為

解:如圖所示.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將拋物線y=x2向左平移2個單位,再向下平移3個單位,則得到的拋物線解析式是( )
A.y=(x﹣2)2﹣3
B.y=(x﹣2)2+3
C.y=(x+2)2﹣3
D.y=(x+2)2+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點Ma,3a)在x軸上,則點M的坐標是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,然后解答問題.

經(jīng)過正四邊形(即正方形)各頂點的圓叫做這個正四邊形的外接圓,圓心是正四邊形的對稱中心,這個正四邊形叫做這個圓的內(nèi)接正四邊形

如圖,正方形ABCD內(nèi)接于⊙O,O的面積為S1,正方形ABCD的面積為S2.以圓心O為頂點作∠MON,使∠MON90°.將∠MON繞點O旋轉(zhuǎn),OM、ON分別與⊙O交于點E、F,分別與正方形ABCD的邊交于點G、H.設(shè)由OE、OF、及正方形ABCD的邊圍成的圖形(陰影部分)的面積為S

1OM經(jīng)過點A(如圖①),則S、S1、S2之間的關(guān)系為: (用含S1S2的代數(shù)式表示);

2OMABG(如圖②),則(1)中的結(jié)論仍然成立嗎?請說明理由;

3)當∠MON旋轉(zhuǎn)到任意位置時(如圖③),則(1)中的結(jié)論任然成立嗎:請說明理由.

查看答案和解析>>

同步練習冊答案