【題目】如圖1,點A(0,8)、點B(2,a)在直線y=﹣2x+b上,反比例函數(shù)y=(x>0)的圖象經(jīng)過點B.
(1)求a和k的值;
(2)將線段AB向右平移m個單位長度(m>0),得到對應線段CD,連接AC、BD.
①如圖2,當m=3時,過D作DF⊥x軸于點F,交反比例函數(shù)圖象于點E,求E點的坐標;
②在線段AB運動過程中,連接BC,若△BCD是等腰三形,求所有滿足條件的m的值.
【答案】(1)a=4,k=8;(2)①E(5,);②滿足條件的m的值為4或5或2.
【解析】
(1)把點A坐標代入直線AB的解析式中,求出a,求出點B坐標,再將點B坐標代入反比例函數(shù)解析式中求出k;
(2)①確定出點D(5,4),得到求出點E坐標;
②先表示出點C,D坐標,再分三種情況:當BC=CD時,判斷出點B在AC的垂直平分線上,即可得出結(jié)論,當BC=BD時,表示出BC,用BC=BD建立方程求解即可得出結(jié)論,當BD=AB時,m=AB,根據(jù)勾股定理計算即可.
解:(1)∵點A(0,8)在直線y=﹣2x+b上,
∴﹣2×0+b=8,
∴b=8,
∴直線AB的解析式為y=﹣2x+8,
將點B(2,a)代入直線AB的解析式y=﹣2x+8中,得﹣2×2+8=a,
∴a=4,
∴B(2,4),
將B(2,4)代入反比例函數(shù)解析式y=(x>0)中,得k=xy=2×4=8;
(2)①由(1)知,B(2,4),k=8,∴反比例函數(shù)解析式為y=,
當m=3時,將線段AB向右平移3個單位長度,得到對應線段CD,
∴D(2+3,4),即D(5,4),
∵DF⊥x軸于點F,交反比例函數(shù)y=的圖象于點E,
∴E(5,);
②如圖,
∵將線段AB向右平移m個單位長度(m>0),得到對應線段CD,
∴CD=AB,AC=BD=m,
∵A(0,8),B(2,4),
∴C(m,8),D((m+2,4),
△BCD是等腰三形,
當BC=CD時,BC=AB,
∴點B在線段AC的垂直平分線上,
∴m=2×2=4,
當BC=BD時,B(2,4),C(m,8),
∴,
∴,
∴m=5,
當BD=AB時,,
綜上所述,△BCD是以BC為腰的等腰三角形,滿足條件的m的值為4或5或2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形ABCD沿GH對折,點C落在Q處,點D落在AB邊上E處,EQ與BC相交于F,若AD=8 cm,AB=6 cm,AE=4cm,則△EBF的周長是______________ cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC在平面直角坐標系中,三個頂點的坐標分別為A(0,4),B(2,2),C(4,6)(正方形網(wǎng)格中,每個小正方形的邊長均為1).
(1)畫出△ABC向下平移5個單位長度得到的△A1B1C1,并寫出點B1的坐標;
(2)以點O為位似中心,在第三象限內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且相似比為1:2,直接寫出點C2的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在以點O為圓心的兩個同心圓中,大圓的弦AB交小圓于點C、D.
(1)求證AC=BD;
(2)若AC=3,大圓和小圓的半徑分別為6和4,則CD的長度是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,點E在AD上,且BE=BC.
(1)EC平分∠BED嗎?證明你的結(jié)論.
(2)若AB=1,∠ABE=45°,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的兩邊OA、OC分別在x軸、y軸的正半軸上,OA=4,OC=2.點P從點O出發(fā),沿x軸以每秒1個單位長的速度向點A勻速運動,當點P到達點A時停止運動,設點P運動的時間是t秒.將線段CP的中點繞點P按順時針方向旋轉(zhuǎn)90°得點D,點D隨點P的運動而運動,連接DP、DA.
(1)當t=2時,點D的坐標是 ;
(2)請用含t的代數(shù)式表示出點D的坐標 ;
(3)在點P從O向A運動的過程中,△DPA能否成為直角三角形?若能,求t的值.若不能,請說明理由;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=72°,將△ABC繞點B按逆時針方向旋轉(zhuǎn)得到△BDE(點D與點 A是對應點,點E與點C是對應點),且邊DE恰好經(jīng)過點C,則∠ABD的度數(shù)為
A. 36° B. 40° C. 45° D. 50°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利45元,為了擴大銷售、增加盈利盡快減少庫存,商場決定采取適當?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價1元,商場平均每天可多售出4件,若商場平均每天盈利2100元,每件襯衫應降價多少元?請完成下列問題:
(1)未降價之前,某商場襯衫的總盈利為 元.
(2)降價后,設某商場每件襯衫應降價x元,則每件襯衫盈利 元,平均每天可售出 件(用含x的代數(shù)式進行表示)
(3)請列出方程,求出x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦EF⊥AB于點C,過點F作⊙O的切線交AB的延長線于點D.
(1)已知∠A=α,求∠D的大。ㄓ煤α的式子表示);
(2)取BE的中點M,連接MF,請補全圖形;若∠A=30°,MF=,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com