【題目】在平行四邊形ABCD中,E是AD上一點,AE=AB,過點E作直線EF,在EF上取一點G,使得∠EGB=∠EAB,連接AG.
(1)如圖①,當(dāng)EF與AB相交時,若∠EAB=60°,求證:EG=AG+BG;
(2)如圖②,當(dāng)EF與CD相交時,且∠EAB=90°,請你寫出線段EG、AG、BG之間的數(shù)量關(guān)系,并證明你的結(jié)論.
【答案】(1)證明見解析;(2)EG=AG﹣BG,理由見解析.
【解析】試題分析:(1)如圖,作∠GAH=∠EAB交GE于點H,易證△ABG≌△AEH ,再判定△AGH是等邊三角形,即可得結(jié)論;(2)EG=AG-BG,如圖②,作∠GAH=∠EAB交GE于點H,類比(1)的方法證明△ABG≌△AEH,再判定△AGH是等腰直角三角形,即可得結(jié)論.
試題解析:
如圖,作∠GAH=∠EAB交GE于點H
∴∠GAB=∠HAE
∵∠EAB =∠EGB,∠APE=∠BPG
∴∠ABG=∠AEH
又∵AB=AE
∴△ABG≌△AEH
∴BG=EH,AG=AH
∵∠GAH=∠EAB=60°
∴△AGH是等邊三角形
∴AG=GH
∴EG=AG+BG
(2) EG=AG-BG,
如圖②,作∠GAH=∠EAB交GE于點H
∴∠GAB=∠HAE
又∵∠EGB=∠EAB=90°
∴∠ABG+∠AEG=∠AEG+∠AEH=180°
∴∠ABG=∠AEH
又∵AB=AE
∴△ABG≌△AEH
∴BG=EH,AG=AH
又∵∠GAH =∠EAB=90°
∴△AGH是等腰直角三角形
∴AG=HG
∴EG=AG-BG
科目:初中數(shù)學(xué) 來源: 題型:
【題目】未成年人思想道德建設(shè)越來越受到社會的關(guān)注,遼陽青少年研究所隨機調(diào)查了本市一中學(xué)100名學(xué)生寒假中花零花錢的數(shù)量(錢數(shù)取整數(shù)元),以便引導(dǎo)學(xué)生樹立正確的消費觀.根據(jù)調(diào)查數(shù)據(jù)制成了頻
分組 | 頻數(shù) | 頻率 |
0.5~50.5 |
| 0.1 |
50.5~ | 20 | 0.2 |
100.5~150.5 |
|
|
200.5 | 30 | 0.3 |
200.5~250.5 | 10 | 0.1 |
率分布表和頻率分布直方圖(如圖).
(1)補全頻率分布表;
(2)在頻率分布直方圖中,長方形ABCD的面積是 ;這次調(diào)查的樣本容量是 ;
(3)研究所認(rèn)為,應(yīng)對消費150元以上的學(xué)生提出勤儉節(jié)約的建議.試估計應(yīng)對該校1000名學(xué)生中約多少名學(xué)生提出這項建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小剛為班級購買了一、二、三等獎的獎品,已知一等獎獎品6元,二等獎獎品4元,三等獎獎品2元,其中獲獎人數(shù)的分配情況如圖,則小剛購買獎品費用的平均數(shù)和眾數(shù)分別為( 。%
A. 2元,3元 B. 2.5元,2.5元 C. 3元,2元 D. 3元,3元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形ABCD中,E、F分別在邊AB、CD上,EF∥BC,AE:BE=1:2,對角線AC交EF于G,若BC=10cm,AD=6cm,則EF的長等于______ cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有四張背面相同的紙牌A,B,C,D,其正面分別是紅桃、方塊、黑桃、梅花,其中紅桃、方塊為紅色,黑桃、梅花為黑色.小明將這4張紙牌背面朝上洗勻后,摸出一張,將剩余3張洗勻后再摸出一張.請用畫樹狀圖或列表的方法求摸出的兩張牌均為黑色的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為應(yīng)對越來越嚴(yán)重的霧霾天氣,孔明同學(xué)所在班級的家長委員會,準(zhǔn)備為該班集資捐贈一臺大型的空氣凈化機,現(xiàn)知道某商場將該型號的空氣凈化機按標(biāo)價的八折出售,每臺空氣凈化機仍可獲利,已知該型號客氣凈化機的進(jìn)價為元.
求該空氣凈化機的標(biāo)價.
若該班有名學(xué)生,則該班每位學(xué)生家長應(yīng)平均捐助多少元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
如圖1,在平面直角坐標(biāo)系xOy中,直線y1=ax+b與雙曲線y2= 交于A(1,3)和B(﹣3,﹣1)兩點.
觀察圖象可知:
①當(dāng)x=﹣3或1時,y1=y2;
②當(dāng)﹣3<x<0或x>1時,y1>y2 , 即通過觀察函數(shù)的圖象,可以得到不等式ax+b> 的解集.
有這樣一個問題:求不等式x3+4x2﹣x﹣4>0的解集.
某同學(xué)根據(jù)學(xué)習(xí)以上知識的經(jīng)驗,對求不等式x3+4x2﹣x﹣4>0的解集進(jìn)行了探究.
下面是他的探究過程,請將(2)、(3)、(4)補充完整:
(1)將不等式按條件進(jìn)行轉(zhuǎn)化:
(2)構(gòu)造函數(shù),畫出圖象
設(shè)y3=x2+4x﹣1,y4= ,在同一坐標(biāo)系中分別畫出這兩個函數(shù)的圖象.
雙曲線y4= 如圖2所示,請在此坐標(biāo)系中畫出拋物線y3=x2+4x﹣1;(不用列表)
(3)確定兩個函數(shù)圖象公共點的橫坐標(biāo),觀察所畫兩個函數(shù)的圖象,猜想并通過代入函數(shù)解析式驗證可知:滿足y3=y4的所有x的值為
(4)借助圖象,寫出解集
結(jié)合(1)的討論結(jié)果,觀察兩個函數(shù)的圖象可知:不等式x3+4x2﹣x﹣4>0的解集
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新農(nóng)村社區(qū)改造中,有一部分樓盤要對外銷售,某樓盤共23層,銷售價格如下:第八層樓房售價為4000元/米2,從第八層起每上升一層,每平方米的售價提高50元;反之,樓層每下降一層,每平方米的售價降低30元,已知該樓盤每套樓房面積均為120米2.
若購買者一次性付清所有房款,開發(fā)商有兩種優(yōu)惠方案:
方案一:降價8%,另外每套樓房贈送a元裝修基金;
方案二:降價10%,沒有其他贈送.
(1)請寫出售價y(元/米2)與樓層x(1≤x≤23,x取整數(shù))之間的函數(shù)關(guān)系式;
(2)老王要購買第十六層的一套樓房,若他一次性付清購房款,請幫他計算哪種優(yōu)惠方案更加合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,點E在對角線AC上,EC=BC=DC.
(1)若∠CBD=39°,求∠BAD的度數(shù);
(2)求證:∠1=∠2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com