已知一次函數(shù)圖象經(jīng)過點(diǎn)(-2,5)并且與y軸相交于點(diǎn)P,直線y=-
1
2
x+3與y軸相交于點(diǎn)Q,點(diǎn)Q恰與點(diǎn)P關(guān)于x軸對(duì)稱,求這個(gè)一次函數(shù)的解析式.
∵直線y=-
1
2
x+3與y軸相交于點(diǎn)Q,
∴Q(0,3),
∵點(diǎn)Q恰與點(diǎn)P關(guān)于x軸對(duì)稱,
∴P(0,-3),
設(shè)一次函數(shù)的解析式為:y=kx-3,將點(diǎn)(-2,5)代入y=kx-3,得k=-4,
∴一次函數(shù)的解析式為y=-4x-3.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某種化肥在縣城里的甲、乙兩個(gè)生產(chǎn)資料門市部均有銷售,現(xiàn)了解到該種化肥在甲、乙兩個(gè)門市部的標(biāo)價(jià)均為600元/噸,但都有一定的優(yōu)惠政策,甲門市部是第一噸按標(biāo)價(jià)收費(fèi),超出部分每噸優(yōu)惠25%;乙門市部每噸優(yōu)惠20%出售.
(1)寫出甲門市部每次交易的銷售額y1(元)與銷量x(噸)之間的函數(shù)關(guān)系式及乙門市部每次交易的銷售額y2(元)與銷量x(噸)之間的函數(shù)關(guān)系式;
(2)種糧大戶張某想一次購(gòu)買此種化肥4噸,李某想一次購(gòu)買此種化肥8噸,他們到哪個(gè)門市部購(gòu)買省錢,請(qǐng)給他們分別提出合理建議.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知一次函數(shù)的圖象經(jīng)過點(diǎn)(3,6)與點(diǎn)(
1
2
,-
1
2
),求這個(gè)函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,一次函數(shù)y=-
3
4
x+3的圖象分別與x軸、y軸交于點(diǎn)A、B,以線段AB為邊在第一象限內(nèi)作等腰Rt△ABC,∠BAC=90°.則過B、C兩點(diǎn)直線的解析式為( 。
A.y=
1
7
x+3
B.y=
1
5
x+3
C.y=
1
4
x+3
D.y=
1
3
x+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,一次函數(shù)的圖象經(jīng)過A,B兩點(diǎn),則這個(gè)一次函數(shù)的解析式是( 。
A.y=
3
2
x-2
B.y=
1
2
x-2
C.y=
1
2
x+2
D.y=
3
2
x+2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

為了迎接“十•一”小長(zhǎng)假的購(gòu)物高峰.某運(yùn)動(dòng)品牌專賣店準(zhǔn)備購(gòu)進(jìn)甲、乙兩種運(yùn)動(dòng)鞋.其中甲、乙兩種運(yùn)動(dòng)鞋的進(jìn)價(jià)和售價(jià)如下表:
運(yùn)動(dòng)鞋
價(jià)格
進(jìn)價(jià)(元/雙)mm-20
售價(jià)(元/雙)240160
已知:用3000元購(gòu)進(jìn)甲種運(yùn)動(dòng)鞋的數(shù)量與用2400元購(gòu)進(jìn)乙種運(yùn)動(dòng)鞋的數(shù)量相同.
(1)求m的值;
(2)要使購(gòu)進(jìn)的甲、乙兩種運(yùn)動(dòng)鞋共200雙的總利潤(rùn)(利潤(rùn)=售價(jià)-進(jìn)價(jià))不少于21700元,且不超過22300元,問該專賣店有幾種進(jìn)貨方案?
(3)在(2)的條件下,專賣店準(zhǔn)備對(duì)甲種運(yùn)動(dòng)鞋進(jìn)行優(yōu)惠促銷活動(dòng),決定對(duì)甲種運(yùn)動(dòng)鞋每雙優(yōu)惠a(50<a<70)元出售,乙種運(yùn)動(dòng)鞋價(jià)格不變.那么該專賣店要獲得最大利潤(rùn)應(yīng)如何進(jìn)貨?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某市采用價(jià)格調(diào)控的手段達(dá)到節(jié)約用水的目的,制定如下用水收費(fèi)標(biāo)準(zhǔn):每戶每月用水不超過6m3,水費(fèi)按a元/m3收費(fèi);若超過
6m3,6m3以內(nèi)的仍按a元/m3收費(fèi),超過6m3的部分以b元/m3收費(fèi).某戶居民5、6月份用水量和水費(fèi)如下表:
月份用水量(m3水費(fèi)(元)
557.5
6927
設(shè)該用戶每月用水量為xm3,應(yīng)交水費(fèi)y元.
(1)求出a,b的值;
(2)寫出用水量不超過6m3和超過6m3時(shí),y與x之間的函數(shù)關(guān)系式;
(3)若該用戶7月份用水量為8m3,他應(yīng)交多少元水費(fèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某校為實(shí)施國(guó)家“營(yíng)養(yǎng)早餐”工程,食堂用甲、乙兩種原料配制成某種營(yíng)養(yǎng)食品,已知這兩種原料的維生素C含量及購(gòu)買這兩種原料的價(jià)格如下表:
原料
維生素C及價(jià)格
甲種原料乙種原料
維生素C(單位/千克)600400
原料價(jià)格(元/千克)95
現(xiàn)要配制這種營(yíng)養(yǎng)食品20千克,要求每千克至少含有480單位的維生素C.設(shè)購(gòu)買甲種原料x千克.
(1)至少需要購(gòu)買甲種原料多少千克?
(2)設(shè)食堂用于購(gòu)買這兩種原料的總費(fèi)用為y元,求y與x的函數(shù)關(guān)系式.并說明購(gòu)買甲種原料多少千克時(shí),總費(fèi)用最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線l1的解析表達(dá)式為:y=-3x+3,且l1與x軸交于點(diǎn)D,直線l2經(jīng)過點(diǎn)A,B,直線l1,l2交于點(diǎn)C.
(1)求直線l2的函數(shù)關(guān)系式;
(2)求△ADC的面積;
(3)若點(diǎn)H為坐標(biāo)平面內(nèi)任意一點(diǎn),在坐標(biāo)平面內(nèi)是否存在這樣的點(diǎn)H,使以A、D、C、H為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)H的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案