【題目】如圖,在平行四邊形ABCD中,∠BAD的平分線交BC于點(diǎn)E,ABC的平分線交AD于點(diǎn)F.若BF=12,AB=10,則AE的長(zhǎng)為( 。

A. 10 B. 12 C. 16 D. 18

【答案】C

【解析】

先證明四邊形ABEF是菱形,得出AEBF,OA=OE,OB=OF=BF=6,由勾股定理求出OA,即可得出AE的長(zhǎng)

如圖,

四邊形ABCD是平行四邊形,

ADBC

∴∠DAE=AEB,

∵∠BAD的平分線交BC于點(diǎn)E

∴∠DAE=BEA,

∴∠BAE=BEA

AB=BE,同理可得AB=AF

AF=BE,

∴四邊形ABEF是平行四邊形,

AB=AF,

∴四邊形ABEF是菱形,

AEBF,OA=OE,OB=OF=BF=6,

OA==8,

AE=2OA=16;

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)家環(huán)保局統(tǒng)一規(guī)定,空氣質(zhì)量分為5級(jí):當(dāng)空氣污染指數(shù)達(dá)0—50時(shí)為1級(jí),質(zhì)量為優(yōu);51—100時(shí)為2級(jí),質(zhì)量為良;101—200時(shí)為3級(jí),輕度污染;201—300時(shí)為4級(jí),中度污染;300以上時(shí)為5級(jí),重度污染.某城市隨機(jī)抽取了2015年某些天的空氣質(zhì)量檢測(cè)結(jié)果,并整理繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息,解答下列各題:

(1) 本次調(diào)查共抽取了 天的空氣質(zhì)量檢測(cè)結(jié)果進(jìn)行統(tǒng)計(jì);

(2) 補(bǔ)全條形統(tǒng)計(jì)圖;

(3) 扇形統(tǒng)計(jì)圖中3級(jí)空氣質(zhì)量所對(duì)應(yīng)的圓心角為 °;

(4) 如果空氣污染達(dá)到中度污染或者以上,將不適宜進(jìn)行戶外活動(dòng),根據(jù)目前的統(tǒng)計(jì),請(qǐng)你估計(jì)2015年該城市有多少天不適宜開(kāi)展戶外活動(dòng).(2015年共365)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形,點(diǎn)為對(duì)角線上一個(gè)動(dòng)點(diǎn),邊上一點(diǎn),且

(1)求證:;

(2)若四邊形的面積為25,試探求滿足的數(shù)量關(guān)系式;

(3)若為射線上的點(diǎn),設(shè),四邊形的周長(zhǎng)為,且,求的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,數(shù)軸上兩點(diǎn)A、B對(duì)應(yīng)的數(shù)分別為-30、0.若點(diǎn)A、B同時(shí)出發(fā),點(diǎn)A以每秒2個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng);點(diǎn)B以每秒3個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),到達(dá)點(diǎn)A出發(fā)時(shí)的位置后立即以每秒4個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒.

1)求點(diǎn)A和點(diǎn)B第一次相遇時(shí)t的值;

2)當(dāng)點(diǎn)A和點(diǎn)B之間的距離為6個(gè)單位長(zhǎng)度時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形紙片ABCD中,已知AD=8,AB=6E是邊BC上的點(diǎn),以AE為折痕折疊紙片,使點(diǎn)B落在點(diǎn)F處,連接FC,當(dāng)△EFC為直角三角形時(shí),BE的長(zhǎng)為   

【答案】36

【解析】試題分析:

由題意可知有兩種情況,見(jiàn)圖1與圖2;

1:當(dāng)點(diǎn)F在對(duì)角線AC上時(shí),∠EFC=90°

∵∠AFE=∠B=90°,∠EFC=90°

點(diǎn)A、F、C共線,

矩形ABCD的邊AD=8,

∴BC=AD=8,

Rt△ABC中,AC==10,

設(shè)BE=x,則CE=BC﹣BE=8﹣x,

由翻折的性質(zhì)得,AF=AB=6,EF=BE=x,

∴CF=AC﹣AF=10﹣6=4,

Rt△CEF中,EF2+CF2=CE2,

x2+42=8﹣x2,

解得x=3

BE=3;

2:當(dāng)點(diǎn)F落在AD邊上時(shí),∠CEF=90°

由翻折的性質(zhì)得,∠AEB=∠AEF=×90°=45°

四邊形ABEF是正方形,

∴BE=AB=6,

綜上所述,BE的長(zhǎng)為36

故答案為:36

考點(diǎn):1、軸對(duì)稱(翻折變換);2、勾股定理

型】填空
結(jié)束】
15

【題目】計(jì)算:()2+(﹣4)0cos45°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在半徑為4⊙O中,AB、CD是兩條直徑,MOB的中點(diǎn),CM的延長(zhǎng)線交⊙O于點(diǎn)E,且EMMC.連結(jié)DE,DE

1求證:;

2EM的長(zhǎng);

3)求sin∠EOB的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于任意四個(gè)有理數(shù)a,b,c,d,可以組成兩個(gè)有理數(shù)對(duì)a,bc,d).我們規(guī)定

abc,d=bcad

例如:(123,4=2×31×4=2

根據(jù)上述規(guī)定解決下列問(wèn)題

1有理數(shù)對(duì)2,-33,-2=_______;

2若有理數(shù)對(duì)(-3,2x11,x+1=7,x=_______

3當(dāng)滿足等式(-3,2x1kxk=52kx是整數(shù)時(shí),求整數(shù)k的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,反比例函數(shù)x>0)的圖象經(jīng)過(guò)點(diǎn)A,1),射線AB與反比例函數(shù)圖象交于另一點(diǎn)B(1,a),射線ACy軸交于點(diǎn)C,∠BAC=75°,ADy,垂足為D

(1)k的值;

(2)tan∠DAC的值及直線AC的解析式;

(3)如圖2,M是線段AC上方反比例函數(shù)圖象上一動(dòng)點(diǎn)過(guò)M作直線lx,AC相交于點(diǎn)N連接CM,求△CMN面積的最大值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如下圖,已知AB是⊙O的直徑,點(diǎn)P在BA的延長(zhǎng)線上,PD切⊙O于點(diǎn)D,過(guò)點(diǎn)B作BE垂直于PD,交PD的延長(zhǎng)線于點(diǎn)C,連接AD并延長(zhǎng),交BE于點(diǎn)E.

(1)求證:AB=BE;

(2)若PA=2,cosB=,求⊙O半徑的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案