【題目】如圖,在RtABC中,∠C=90°,BE平分∠ABCAC于點(diǎn)E,作EDEBAB于點(diǎn)D,OBED的外接圓.

(1)求證:AC是⊙O的切線;

(2)已知⊙O的半徑為2.5,BE=4,求BC,AD的長.

【答案】(1)證明見解析;(2)BC=,AD=

【解析】

(1)連接OE,由OB=OE知∠OBE=OEB、由BE平分∠ABC知∠OBE=CBE,據(jù)此得∠OEB=CBE,從而得出OEBC,進(jìn)一步即可得證;

(2)證BDE∽△BEC,據(jù)此可求得BC的長度,再證AOE∽△ABC,據(jù)此可得AD的長.

1)如圖,連接OE,

OB=OE,

∴∠OBE=OEB,

BE平分∠ABC,

∴∠OBE=CBE,

∴∠OEB=CBE,

OEBC,

又∵∠C=90°,

∴∠AEO=90°,即OEAC,

AC為⊙O的切線;

(2)EDBE,

∴∠BED=C=90°,

又∵∠DBE=EBC,

∴△BDE∽△BEC,

,即

BC=;

∵∠AEO=C=90°,A=A,

∴△AOE∽△ABC,

,即,

解得:AD=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠MON90°,OB4,點(diǎn)A是直線OM上的一個(gè)動(dòng)點(diǎn),連結(jié)AB,作∠MAB與∠ABN的角平分線AFBF,兩條角平分線所在的直線相交于點(diǎn)F,則點(diǎn)A在運(yùn)動(dòng)過程中線段BF的最小值為( 。

A. 4B. C. 8D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是我縣新區(qū)部分小區(qū)位置簡圖.設(shè)港澳城為點(diǎn)A,水榭花都為點(diǎn)B,朝陽家園為點(diǎn)C,濱海華庭為點(diǎn)D,陽光家園為點(diǎn)E,盛世嘉苑為點(diǎn)F,設(shè)每個(gè)小格的單位為1

1)請(qǐng)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,并寫出六個(gè)小區(qū)的坐標(biāo);

2)依次連接點(diǎn)A、CE、B,請(qǐng)求出四邊形ACEB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】時(shí)代中學(xué)從學(xué)生興趣出發(fā),實(shí)施體育活動(dòng)課走班制.為了了解學(xué)生最喜歡的一種球類運(yùn)動(dòng),以便合理安排活動(dòng)場地,在全校至少喜歡一種球類(乒乓球、羽毛球、排球、籃球、足球)運(yùn)動(dòng)的1200名學(xué)生中,隨機(jī)抽取了若干名學(xué)生進(jìn)行調(diào)查(每人只能在這五種球類運(yùn)動(dòng)中選擇一種).調(diào)查結(jié)果統(tǒng)計(jì)如下:

球類名稱

乒乓球

羽毛球

排球

籃球

足球

人數(shù)

42

15

33

解答下列問題:

(1)這次抽樣調(diào)查中的樣本是________;

(2)統(tǒng)計(jì)表中,________,________;

(3)試估計(jì)上述1200名學(xué)生中最喜歡乒乓球運(yùn)動(dòng)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】建設(shè)中的大外環(huán)路是我市的一項(xiàng)重點(diǎn)民生工程.某工程公司承建的一段路基工程的施工土方量為120萬立方,原計(jì)劃由公司的甲、乙兩個(gè)工程隊(duì)從公路的兩端同時(shí)相向施工150天完成.由于特殊情況需要,公司抽調(diào)甲隊(duì)外援施工,由乙隊(duì)先單獨(dú)施工40天后甲隊(duì)返回,兩隊(duì)又共同施工了110天,這時(shí)甲乙兩隊(duì)共完成土方量103.2萬立方.

(1)問甲、乙兩隊(duì)原計(jì)劃平均每天的施工土方量分別為多少萬立方?

(2)在抽調(diào)甲隊(duì)外援施工的情況下,為了保證150天完成任務(wù),公司為乙隊(duì)新購進(jìn)了一批機(jī)械來提高效率,那么乙隊(duì)平均每天的施工土方量至少要比原來提高多少萬立方才能保證按時(shí)完成任務(wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在正方形ABCD外取一點(diǎn)E,連接AE、BE、DE.過點(diǎn)A作AE的垂線交DE于點(diǎn)P.若AE=AP=1,PB=.下列結(jié)論:①△APD≌△AEB;②點(diǎn)B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結(jié)論的序號(hào)是(

A.①③④ B.①②⑤ C.③④⑤ D.①③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,DBC的中點(diǎn),過D點(diǎn)的直線GFACF,交AC的平行線BGG點(diǎn),DEDF,交AB于點(diǎn)E,連結(jié)EG、EF

1)求證:BGCF;

2)請(qǐng)你判斷BE+CFEF的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下圖是由一些火柴棒搭成的圖案:

(1)擺第①個(gè)圖案用 根火柴棒,擺第②個(gè)圖案用 根火柴棒,擺第③個(gè)圖案用 根火柴棒.

(2)按照這種方式擺下去,擺第n個(gè)圖案用多少根火柴棒?

(3)計(jì)算一下擺121根火柴棒時(shí),是第幾個(gè)圖案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,點(diǎn)C在優(yōu)弧上,將弧沿BC折疊后剛好經(jīng)過AB的中點(diǎn)D.若⊙O的半徑為,AB=4,則BC的長是( 。

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案