【題目】如圖,是的兩條高線,且它們相交于是邊的中點(diǎn),連結(jié),與相交于點(diǎn),已知.
(1)求證BF=AC.
(2)若BE平分.
①求證:DF=DG.
②若AC=8,求BG的長.
【答案】(1)證明見解析;(2)①證明見解析;②BG=.
【解析】
(1)易證是等腰直角三角形,然后得到,然后利用ASA證明Rt△DFB≌Rt△DAC,即可得到結(jié)論;
(2)①由是等腰直角三角形,得到∠DCB=∠HDB=∠CDH=45°,由BE是角平分線,則∠ABE=22.5°,然后得到∠DFB=∠DGF,即可得到DF=DG;
③連接CG,則BG=CG,然后得到△CEG是等腰直角三角形,然后有△AEB≌△CEB,則有CE=AE,即可求出BG的長度.
解:(1)證明:,BD=CD,
是等腰直角三角形.
,,且,
.
在和中,
,
Rt△DFB≌Rt△DAC(ASA),
.
(2)①∵△BCD是等腰直角三角形
H點(diǎn)是CB的中點(diǎn)
∴DH=HB=CH
所以∠DCB=∠HDB=∠CDH=45°
∵BE平分∠ABC
∴∠ABE=22.5°
∴∠DFB=67.5°
∴∠DGF=∠DBF+∠HDB= 67.5°
∴∠DFB=∠DGF
∴DF=DG
②連接CG
∵DH是中垂線
∴BG=CG
∴∠GCH=∠GBH=22.5°
∵Rt△DFB≌Rt△DAC
∴∠ACD=∠ABE=22.5°
∵∠DCB=45°
∴∠DCG=22.5°
∴∠ECG=45°
∵BE⊥AC
∴∠CEB=90°
∴△CEG是等腰直角三角形
在△AEB和△CEB中
∴△AEB≌△CEB
∴CE=AE
∵AC=8
∴CE=AE=EG=4
∴CG=GB=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在農(nóng)業(yè)技術(shù)部門指導(dǎo)下,小明家今年種植的獼猴桃喜獲豐收.去年獼猴桃的收入結(jié)余12000元,今年獼猴桃的收入比去年增加了20%,支出減少10%,結(jié)余今年預(yù)計(jì)比去年多11400元.請(qǐng)計(jì)算:
(1)今年結(jié)余 元;
(2)若設(shè)去年的收入為元,支出為元,則今年的收入為 元,支出為 元(以上兩空用含、的代數(shù)式表示)
(3)列方程組計(jì)算小明家今年種植獼猴桃的收入和支出.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2﹣(2m+1)x+m(m+1)=0,
(1)求證:方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)方程的兩根分別為x1、x2,求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BE平分∠ABC,DE∥BC.
(1)判斷△DBE是什么三角形,并說明理由;
(2)若F為BE中點(diǎn),∠ABE=30°,求∠BDF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點(diǎn)D,DE交AC于點(diǎn)E,且∠A=∠ADE.
(1)求證:DE是⊙O的切線;
(2)若AD=16,DE=10,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,△ABC是等邊三角形,過點(diǎn)C作CD∥AB,且CD=AB,連接BD交AC于點(diǎn)O.
(1)如圖1,求證:AC垂直平分BD;
(2)如圖2,點(diǎn)M在BC的延長線上,點(diǎn)N在線段CO上,且ND=NM,連接BN.求證:NB=NM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,是高,點(diǎn)是上一點(diǎn),,,分別是上的點(diǎn),且.
(1)求證:.
(2)探索和的關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E是BC的中點(diǎn),AB⊥BC,DC⊥BC,AE平分∠BAD,下列結(jié)論:①∠AED=90°②∠ADE=∠CDE③DE=BE④AD=AB+CD,四個(gè)結(jié)論中成立的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的分式方程①和一元二次方程②中,m為常數(shù),方程①的根為非負(fù)數(shù).
(1)求m的取值范圍;
(2)若方程②有兩個(gè)整數(shù)根x1、x2,且m為整數(shù),求方程②的整數(shù)根.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com