【題目】解下列方程組和一元一次不等式組:

1;

2;

3;

4-12

【答案】1;(2;(3x3;(48x10

【解析】

1)整理后用加減消元法求解即可;

2)分別把①代入②和③,消去z,得到關(guān)于xy的二元一次方程組,求出xy的值,進(jìn)而可求出z的值;

3)先分別解兩個不等式,求出它們的解集,再求兩個不等式解集的公共部分即可得到不等式組的解集;

2)轉(zhuǎn)化為不等式組求解即可.

1,

化簡得

,

+②,得

8x=2,

x=,

把代入②得

+y=2,

y=,

;

2,

把①分別代入②和③,得

,

,

解得

,

代入①得

z=2+3=5,

;

3,

解①得

x2

解②得

x3,

∴不等式組的解集是x3;

4)∵-12

,

解①得

x8,

解②得

x10,

∴不等式組的解集是8x10

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,AC=BC,點(diǎn)D、E、F分別是線段ACBC、AD的中點(diǎn),BFED的延長線交于點(diǎn)G,連接GC

1)求證:AB=GD

2)當(dāng)CG=EG時,且AB=2,求CE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,擊打臺球時小球反彈前后的運(yùn)動路線遵循對稱原理,即小球反彈前后的運(yùn)動路線與臺球案邊緣的夾角相等(α=β),在一次擊打臺球時,把位于點(diǎn)P處的小球沿所示方向擊出,小球經(jīng)過5次反彈后正好回到點(diǎn)P,若臺球案的邊AD的長度為4,則小球從P點(diǎn)被擊出到回到點(diǎn)P,運(yùn)動的總路程為( )

A.16
B.16
C.20
D.20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,菱形ABCD的頂點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)B的坐標(biāo)為(0,1),對角線BDx軸平行,若直線ykx+5+2kk≠0)與菱形ABCD有交點(diǎn),則k的取值范圍是(  )

A.B.

C.D.2≤k≤2k≠0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近年來,某市堅(jiān)持綠色發(fā)展理念,著力建設(shè)生態(tài)典范城市,大力開展綠化工程建設(shè).某校“社會實(shí)踐”小組的同學(xué)為了了解該市綠地的發(fā)展情況,對市園林局進(jìn)行了走訪調(diào)查,獲取了如下信息:
信息1:2015年的綠地總面積(綠地總面積=森林面積+草場面積)為276km2 , 其中森林面積比上一年增長40%,草地面積比上一年增長20%.
信息2:2014年的綠地總面積為200km2

求:
(1)該市2014年的森林面積和草場面積分別為多少km2?
(2)若該市2016年的綠地總面積為338km2 , 求2014年至2016年該市綠地總面積的年平均增長率為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,上一點(diǎn),垂直平分,分別交,于點(diǎn),,連接

1)求證:四邊形是菱形;

2)若的中點(diǎn),,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市南縣大力發(fā)展農(nóng)村旅游事業(yè),全力打造洞庭之心濕地公園,其中羅文村的花海、涂鴉、美食特色游享譽(yù)三湘,游人如織.去年村民羅南洲抓住機(jī)遇,返鄉(xiāng)創(chuàng)業(yè),投入20萬元創(chuàng)辦農(nóng)家樂(餐飲+住宿),一年時間就收回投資的80%,其中餐飲利潤是住宿利潤的2倍還多1萬元.

(1)求去年該農(nóng)家樂餐飲和住宿的利潤各為多少萬元?

(2)今年羅南洲把去年的餐飲利潤全部用于繼續(xù)投資,增設(shè)了土特產(chǎn)的實(shí)體店銷售和網(wǎng)上銷售項(xiàng)目.他在接受記者采訪時說:我預(yù)計(jì)今年餐飲和住宿的利潤比去年會有10%的增長,加上土特產(chǎn)銷售的利潤,到年底除收回所有投資外,還將獲得不少于10萬元的純利潤.請問今年土特產(chǎn)銷售至少有多少萬元的利潤?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AD=5,AB=4,點(diǎn)E,F在直線AD上,且四邊形BCFE為菱形,若線段EF的中點(diǎn)為點(diǎn)M,則線段AM的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABCD中,點(diǎn)E、F分別在AD、BC上,EFBD相交于點(diǎn)O,AE=CF

1)求證:OE=OF;

2)連接BEDF,若BD平分∠EBF,試判斷四邊形EBFD的形狀,并給予證明.

查看答案和解析>>

同步練習(xí)冊答案