【題目】張老師給愛好學習的小軍和小俊提出這樣一個問題:如圖①,在△ABC中,AB=AC,點P為邊BC上的任一點,過點P作PD⊥AB,PE⊥AC,垂足分別為D、E,過點C作CF⊥AB,垂足為F.求證:PD+PE=CF.
小軍的證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.
小俊的證明思路是:如圖2,過點P作PG⊥CF,垂足為G,可以證得:PD=GF,PE=CG,則PD+PE=CF.
【變式探究】如圖③,當點P在BC延長線上時,其余條件不變,求證:PD﹣PE=CF;請運用上述解答中所積累的經驗和方法完成下題:
【結論運用】如圖④,將矩形ABCD沿EF折疊,使點D落在點B上,點C落在點C′處,點P為折痕EF上的任一點,過點P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=8,CF=3,求PG+PH的值.
【答案】見解析.
【解析】
試題分析:證明:(方法1)連接AP,如圖②∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ABP+S△ACP,∴ABCF=ABPD+ACPE,∵AB=AC,∴CF=PD+PE;
(方法2)過點P作PG⊥CF,垂足為G,如圖②,∵PD⊥AB,CF⊥AB,PG⊥FC,∴∠CFD=∠FDP=∠FGP=90°,∴四邊形PDFG是矩形,∴DP=FG,∠DPG=90°,∴∠CGP=90°,∵PE⊥AC,∴∠CEP=90°,∴∠PGC=∠CEP,∵∠BDP=∠DPG=90°,∴PG∥AB,∴∠GPC=∠B,∵AB=AC,∴∠B=∠ACB,∴∠GPC=∠ECP,在△PGC和△CEP中,,∴△PGC≌△CEP,∴CG=PE,∴CF=CG+FG=PE+PD;
【變式探究】證明:連接AP,如圖③,∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ABP﹣S△ACP,∴ABCF=ABPD﹣ACPE,∵AB=AC,∴CF=PD﹣PE;
【結論運用】過點E作EQ⊥BC,垂足為Q,如圖④,∵四邊形ABCD是矩形,∴AD=BC,∠C=∠ADC=90°,∵AD=8,CF=3,∴BF=BC﹣CF=AD﹣CF=5,由折疊可得:DF=BF,∠BEF=∠DEF,∴DF=5,∵∠C=90°,∴DC==4,∵EQ⊥BC,∠C=∠ADC=90°,∴∠EQC=90°=∠C=∠ADC,∴四邊形EQCD是矩形,∴EQ=DC=4,∵AD∥BC,∴∠DEF=∠EFB,∵∠BEF=∠DEF,∴∠BEF=∠EFB,∴BE=BF,由問題情境中的結論可得:PG+PH=EQ,∴PG+PH=4,∴PG+PH的值為4.
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的面積為4,點F,G分別是AB,DC的中點,將點A折到FG上的點P處,折痕為BE,點E在AD上,則AE長為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,點O是菱形ABCD對角線的交點,CE∥BD,EB∥AC,連接OE,交BC于F.
(1)求證:OE=CB;
(2)如果OC: OB=1:2,OE=,求菱形ABCD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校舉行全體學生“漢字聽寫”比賽,每位學生聽寫漢字39個.隨機抽取了部分學生的聽寫結果,繪制成如下的圖表.
組別 | 正確字數x | 人數 |
A | 0≤x<8 | 10 |
B | 8≤x<16 | 15 |
C | 16≤x<24 | 25 |
D | 24≤x<32 | m |
E | 32≤x<40 | n |
根據以上信息完成下列問題:
(1)統計表中的m= ,n= ,并補全條形統計圖;
(2)扇形統計圖中“C組”所對應的圓心角的度數是 ;
(3)已知該校共有900名學生,如果聽寫正確的字的個數少于24個定為不合格,請你估計該校本次聽寫比賽不合格的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在運動會徑賽中,甲、乙同時起跑,剛跑出200m,甲不慎摔倒,他又迅速地爬起來繼續(xù)投入比賽,若他們所跑的路程y(m)與比賽時間x(s)的關系如圖,有下列說法:①他們進行的是800m比賽;②乙全程的平均速度為6.4m/s;③甲摔倒之前,乙的速度快;④甲再次投入比賽后的平均速度為7.5m/s;⑤甲再次投入比賽后在距離終點300米時追上了乙.其中正確的個數有( 。
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某海爾專賣店春節(jié)期間,銷售10臺Ⅰ型號洗衣機和20臺Ⅱ型號洗衣機的利潤為4000元,銷售20臺Ⅰ型號洗衣機和10臺Ⅱ型號洗衣機的利潤為3500元.
(1)求每臺Ⅰ型號洗衣機和Ⅱ型號洗衣機的銷售利潤;
(2)該商店計劃一次購進兩種型號的洗衣機共100臺,其中Ⅱ型號洗衣機的進貨量不超過Ⅰ型號洗衣機的進貨量的2倍,問當購進Ⅰ型號洗衣機多少臺時,銷售這100臺洗衣機的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直角坐標系xOy中,直線y=﹣x+b分別交x,y軸的正半軸于點A,B,交反比例函數y=﹣的圖象于點C,D(點C在第二象限內),過點C作CE⊥x軸于點E,記四邊形OBCE的面積為S1,△OBD的面積為S2,若,則CD的長為____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com