【題目】如圖,在平面直角坐標系xOy中,正方形ABCD的頂點D在y軸上,A(﹣3,0),B(1,b),則正方形ABCD的面積為( 。
A.34B.25C.20D.16
科目:初中數學 來源: 題型:
【題目】如圖,點A、B、C在同一直線上,△ABD,△BCE都是等邊三角形.
(1)求證:AE=CD;
(2)若M,N分別是AE,CD的中點,試判斷△BMN的形狀,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖①是一個重要公式的幾何解釋.請你寫出這個公式;
(2)如圖②,Rt△ABC≌Rt△CDE,∠B=∠D=90°,且B、C、D三點在一條直線上.試證明∠ACE=90°;
(3)伽菲爾德(G a rfield,1881年任美國第20屆總統)利用(1)中的公式和圖②證明了勾股定理(1876年4月1日,發(fā)表在《新英格蘭教育日志》上),現請你嘗試該證明過程.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某天,一蔬菜經營戶用 1200 元錢按批發(fā)價從蔬菜批發(fā)市場買了西紅柿和豆角共 400 kg,然后在市場上按零售價出售,西紅柿和豆角當天的批發(fā)價和零售價如表所示:
品名 | 西紅柿 | 豆角 |
批發(fā)價(單位:元/kg) | 2.4 | 3.2 |
零售價(單位:元/kg) | 3.8 | 5.2 |
(1)該經營戶所批發(fā)的西紅柿和豆角的質量分別為多少 kg?
(2)如果西紅柿和豆角全部以零售價售出,他當天賣出這些西紅柿和豆角賺了多少錢?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為8的正方形ABCD中,點O為AD上一動點(4<OA<8),以O為圓心,OA的長為半徑的圓交邊CD于點E,連接OE、AE,過點E作⊙O的切線交邊BC于F.
(1)求證:△ODE∽△ECF;
(2)在點O的運動過程中,設DE= :
①求的最大值,并求此時⊙O的半徑長;
②判斷△CEF的周長是否為定值,若是,求出△CEF的周長;否則,請說明理由?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“校園安全”受到全社會的廣泛關注,我市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統計,繪制了如圖兩幅尚不完整的統計圖,請你根據統計圖中所提供的信息解答下列問題:
(1)接受問卷調查的學生共有 人,扇形統計圖中“了解”部分所對應扇形的圓心角為 °;
(2)若該中學共有學生900人,請根據上述調查結果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數為 人;
(3)若從對校園安全知識達到“了解”程度的3個女生A、B、C和2個男生M、N中分別隨機抽取1人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到女生A的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在同一平面內,有相互平行的三條直線a,b,c,且a,b之間的距離為1,b,c之間的距離是2,若等腰Rt△ABC的三個頂點恰好各在這三條平行直線上,如圖所示,則△ABC的面積是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE交AE延長線于D,DF⊥AC交AC的延長線于F,連接CD,給出四個結論:① ∠FDC=22.5°; ② 2BD=AE;③ AC+CE=AB; ④ AB-BC=2FC.其中正確的結論有( ) 個
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點O在AB上,以點O為圓心,OA為半徑的圓恰好經過點D,分別交AC,AB于點E,F.
(1)試判斷直線BC與⊙O的位置關系,并說明理由;
(2)若BD=2,BF=2,求陰影部分的面積(結果保留π).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com