精英家教網(wǎng)如圖,已知AB∥DE,AB=DE,AF=DC,求證:四邊形BCEF是平行四邊形.
分析:可連接AE、DB、BE,BE交AD于點O,由線段之間的關(guān)系可得OF=OC,OB=OE,可證明其為平行四邊形.
解答:精英家教網(wǎng)證明:連接AE、DB、BE,BE交AD于點O,
∵AB
.
DE,
∴四邊形ABDE是平行四邊形,
∴OB=OE,OA=OD,
∵AF=DC,
∴OF=OC,
∴四邊形BCEF是平行四邊形.
點評:本題考查了平行四邊形的判定,熟練掌握判定定理是解題的關(guān)鍵.平行四邊形的五種判定方法與平行四邊形的性質(zhì)相呼應,每種方法都對應著一種性質(zhì),在應用時應注意它們的區(qū)別與聯(lián)系.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

5、如圖,已知AB∥DE,∠A=136°,∠C=164°,則∠D的度數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AB=DE,BC=EF,∠B=∠E,A、F、C、D在同一條直線上,
(1)求證:EF∥BC;
(2)若AD=10,CF=4,求AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,請補充完整過程,說明△ABC≌△DEF的理由.
∵AB∥DE
∴∠
A
A
=∠
EDF
EDF

∵BC∥EF
∴∠
F
F
=∠
BCA
BCA
  ( 同 理 )
∵AD=CF   (已知)
∴AD+CD=CF+CD
AC
AC
=
DF
DF

在△ABC和△DEF中

∴△ABC≌△DEF
(ASA)
(ASA)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知AB∥DE,∠B=80°,CM平分∠BCE,求∠DCM的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知AB∥DE,∠B=80°,CM平分∠BCD,CM⊥CN,垂足為C.求∠NCE的度數(shù).

查看答案和解析>>

同步練習冊答案