二次函數(shù)的圖象如圖所示,則函數(shù)值時,自變量的取值范圍是( ).
A.B.C.D.
B

試題分析:函數(shù)值<0,即(x+1)(x-2)<0.
則當(dāng)x+1和x-2結(jié)果互相為異號時成立。
當(dāng)
當(dāng)選B。
點評:本題難度中等,主要考查學(xué)生對二次函數(shù)拋物線圖像及其性質(zhì)知識點的掌握,為中考?碱}型,要求學(xué)生牢固解題技巧。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某中學(xué)課外活動小組準(zhǔn)備圍建一個矩形生物苗圃園,其中一邊靠墻,另外三邊用長為50米的籬笆圍成。已知墻長為26米(如圖所示),設(shè)這個苗圃園平行于墻的一邊的長為米。(1)若垂直于墻的一邊長為米,直接寫出的函數(shù)關(guān)系式及其自變量的取值范圍;(2)當(dāng)為多少米時,這個苗圃園的面積最大,并求出這個最大值;(3)當(dāng)這個苗圃園的面積不小于300平方米時,試結(jié)合函數(shù)圖象,求出的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,⊙Py軸相切于點C,與x軸交于Ax1,0),Bx2,0)兩點,其中x1,x2是方程x2-10x+16=0的兩個根,且x1<x2,連接BC,AC.

(1)求過A、B、C三點的拋物線的解析式;
(2)在拋物線的對稱軸上是否存在點Q,使△QAC的周長最小,若存在求出點Q的坐標(biāo),若不存在,請說明理由;
(3)點M在第一象限的拋物線上,當(dāng)△MBC的面積最大時,求點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=-x2+mx+n與x軸分別交于點A(4,0),B(-2,0),與y軸交于點C.

(1)求該拋物線的解析式;                                 
(2)M為第一象限內(nèi)拋物線上一動點,點M在何處時,△ACM的面積最大;
(3)在拋物線的對稱軸上是否存在這樣的點P,使得△PAC為直角三角形?若存在,請求出所有可能點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

黃岡市某高新企業(yè)制定工齡工資標(biāo)準(zhǔn)時充分考慮員工對企業(yè)發(fā)展的貢獻(xiàn),同時提高員工的積極性、控制員工的流動率,對具有中職以上學(xué)歷員工制定如下的工齡工資方案。
Ⅰ.工齡工資分為社會工齡工資和企業(yè)工齡工資;
Ⅱ.社會工齡=參加本企業(yè)工作時年齡-18,
企業(yè)工齡=現(xiàn)年年齡-參加本企業(yè)工作時年齡。
Ⅲ.當(dāng)年工作時間計入當(dāng)年工齡
Ⅳ.社會工齡工資y1(元/月)與社會工齡x(年)之間的函數(shù)關(guān)系式如①圖所示,企業(yè)工齡工資y2(元/月)與企業(yè)工齡x(年)之間的函數(shù)關(guān)系如圖②所示.
請解決以下問題

(1)求出y1、y2與工齡x之間的函數(shù)關(guān)系式;
(2)現(xiàn)年28歲的高級技工小張從18歲起一直在深圳實行同樣工齡工資制度的外地某企業(yè)工作,為了方便照顧老人與小孩,今年小張回鄉(xiāng)應(yīng)聘到該企業(yè),試計算第一年工齡工資每月下降多少元?
(3)已經(jīng)在該企業(yè)工作超過3年的李工程師今年48歲,試求出他的工資最高每月多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)圖象y=ax2+(a-3)x+1與x軸只有一個交點則a的值為     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,等邊△ABC的邊長為3cm,動點P從點A出發(fā),以每秒1cm的速度,沿A→B→C的方向運動,到達(dá)點C時停止,設(shè)運動時間為x(s),y=PC2,則y關(guān)于x的函數(shù)的圖像大致為  【 】

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的部分圖象如圖所示,若,則x的取值范圍是(    )
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

“一般的,如果二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個公共點,那么一元二次方程ax2+bx+c=0有兩個不相等的實數(shù)根.——蘇科版《數(shù)學(xué)》九年級(下冊)P21”參考上述教材中的話,判斷方程x2-2x=-2實數(shù)根的情況是
A.有三個實數(shù)根B.有兩個實數(shù)根C.有一個實數(shù)根D.無實數(shù)根

查看答案和解析>>

同步練習(xí)冊答案