【題目】某工程隊準備開挖一條隧道,為了縮短工期,必須在山的兩側(cè)同時開挖,為了確保兩側(cè)開挖的隧道在同一條直線上,測量人員在如圖所示的同一高度定出了兩個開挖點P和Q,然后在左邊定出開挖的方向線AP,為了準確定出右邊開挖的方向線BQ,測量人員取一個可以同時看到點A,P,Q的點O,測得∠A=28°,∠AOC=100°,那么∠QBO應(yīng)等于多少度才能確保BQ與AP在同一條直線上?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點D,F分別在AB,AC上,CF=CB.連接CD,將線段CD繞點C按順時針方向旋轉(zhuǎn)90°后得CE,連接EF.
(1)求證:△BCD≌△FCE;
(2)若EF∥CD.求∠BDC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠ABD的平分線BE交AD于點E,∠CDB的平分線DF交BC于點F.求證:四邊形DEBF是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,平行四邊形ABOC如圖放置,點A、C的坐標分別是(0,4)、(﹣1,0),將此平行四邊形繞點O順時針旋轉(zhuǎn)90°,得到平行四邊形A′B′OC′.
(1)若拋物線經(jīng)過點C、A、A′,求此拋物線的解析式;
(2)點M時第一象限內(nèi)拋物線上的一動點,問:當點M在何處時,△AMA′的面積最大?最大面積是多少?并求出此時M的坐標;
(3)若P為拋物線上一動點,N為x軸上的一動點,點Q坐標為(1,0),當P、N、B、Q構(gòu)成平行四邊形時,求點P的坐標,當這個平行四邊形為矩形時,求點N的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD,AB=6,BC=8,E,F(xiàn)分別是AB,BC的中點,AF與DE相交于I,與BD相交于H,則四邊形BEIH的面積為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】長城公司為希望小學(xué)捐贈甲、乙兩種品牌的體育器材,甲品牌有A、B、C三種型號,乙品牌有D、E兩種型號,現(xiàn)要從甲、乙兩種品牌的器材中各選購一種型號進行捐贈.
(1)寫出所有的選購方案(用列表法或樹狀圖);
(2)如果在上述選購方案中,每種方案被選中的可能性相同,那么A型器材被選中的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=4,P是CD邊上的動點(P點不與C、D重合),過點P作直線與BC的延長線交于點E,與AD交于點F,且CP=CE,連接DE、BP、BF,設(shè)CP=x,△PBF的面積為S1,△PDE的面積為S2
(1)求證:BP⊥DE;
(2)求S1﹣S2關(guān)于x的函數(shù)解析式,并寫出x的取值范圍;
(3)當∠PBF=30°時,求S1﹣S2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請你用學(xué)習(xí)“一次函數(shù)”時積累的經(jīng)驗和方法解決下列問題:
(1)在平面直角坐標系中,畫出函數(shù)y=|x|的圖象;
①列表填空:
x | … | -3 | -2 | -1 | 0 | 1 | 2 | 3 | … |
y | … | … |
②描點、連線,在圖所示的平面直角坐標系中畫出y=|x|的圖象;
(2)結(jié)合所畫函數(shù)圖象,寫出y=|x|的兩條不同類型的性質(zhì).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com