【題目】甲、乙兩種客車共7輛,已知甲種客車載客量是30人,乙種客車載客量是45人.其中,每輛乙種客車租金比甲種客車多100元,5輛甲種客車和2輛乙種客車租金共需2300元.

(1)租用一輛甲種客車、一輛乙種客車各多少元?

(2)設(shè)租用甲種客車x輛,總租車費(fèi)為y元,求yx的函數(shù)關(guān)系;在保證275名師生都有座位的前提下,求當(dāng)租用甲種客車多少輛時(shí),總租車費(fèi)最少,并求出這個(gè)最少費(fèi)用.

【答案】(1)租用一輛甲種客車的費(fèi)用為300元,則一輛乙種客車的費(fèi)用為400;(2)當(dāng)租用甲種客車2輛時(shí),總租車費(fèi)最少,最少費(fèi)用為2600元.

【解析】

(1)設(shè)租用一輛甲種客車的費(fèi)用為x元,則一輛乙種客車的費(fèi)用為(x+100)元,則

5x+2(x+100)=2300,解方程即可;

(2)由題意y=300x+400(7﹣x)=﹣100x+2800,又30x+45(7﹣x)≥275,求出x的最大值即可.

(1)設(shè)租用一輛甲種客車的費(fèi)用為x元,

則一輛乙種客車的費(fèi)用為(x+100)元,則

5x+2(x+100)=2300,

解得x=300,

答:租用一輛甲種客車的費(fèi)用為300元,則一輛乙種客車的費(fèi)用為400元.

(2)由題意y=300x+400(7﹣x)=﹣100x+2800,

又30x+45(7﹣x)≥275,解得x≤

∴x的最大值為2,

∵﹣100<0,∴x=2時(shí),y的值最小,最小值為2600.

答:當(dāng)租用甲種客車2輛時(shí),總租車費(fèi)最少,最少費(fèi)用為2600元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,在ABC中,∠B <C,AD,AE分別是ABC的高和角平分線。

(1)若∠B=30°,C=50°,試確定∠DAE的度數(shù);

(2)試寫(xiě)出∠DAE,B,C的數(shù)量關(guān)系,并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)點(diǎn)A2,0)的兩條直線分別交軸于B,C,其中點(diǎn)B在原點(diǎn)上方,點(diǎn)C在原點(diǎn)下方,已知AB=.

1)求點(diǎn)B的坐標(biāo);

2)若△ABC的面積為4,求的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=ax+b與y=ax2﹣bx的圖象可能是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形ABCD沿GH對(duì)折,點(diǎn)C落在Q處,點(diǎn)D落在E處,EQ與BC相交于F.若AD=8cm,AB=6cm,AE=4cm.則△EBF的周長(zhǎng)是cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線ABCD相交于點(diǎn)O,OE是∠BOD的平分線,OFOE,∠BOE=20°.

(1)求∠AOC的度數(shù);

(2)求∠COF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,對(duì)角線ACBD交于O,下列條件中不一定能判定這個(gè)四邊形是平行四邊形的是(  )

A. AB=DC,AD=BC B. ADBC,ABDC

C. OA=OC,OB=OD D. ABDC,AD=BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校九年級(jí)學(xué)生舉行朗誦比賽,全年級(jí)學(xué)生都參加,學(xué)校對(duì)表現(xiàn)優(yōu)異的學(xué)生進(jìn)行表彰,設(shè)置一、二、三等獎(jiǎng)各進(jìn)步獎(jiǎng)共四個(gè)獎(jiǎng)項(xiàng),賽后將九年級(jí)(1)班的獲獎(jiǎng)情況繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息,解答下列問(wèn)題:
(1)九年級(jí)(1)班共有名學(xué)生;
(2)將條形圖補(bǔ)充完整:在扇形統(tǒng)計(jì)圖中,“二等獎(jiǎng)”對(duì)應(yīng)的扇形的圓心角度數(shù)是
(3)如果該九年級(jí)共有1250名學(xué)生,請(qǐng)估計(jì)榮獲一、二、三等獎(jiǎng)的學(xué)生共有多少名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l1:y=﹣x+4分別與x軸、y軸交于點(diǎn)A、點(diǎn)B,且與直線l2:y=x于點(diǎn)C.

(1)如圖①,求出B、C兩點(diǎn)的坐標(biāo);

(2)若D是線段OC上的點(diǎn),且BOD的面積為4,求直線BD的函數(shù)解析式.

(3)如圖②,在(2)的條件下,設(shè)P是射線BD上的點(diǎn),在平面內(nèi)是否存在點(diǎn)Q,使以O、B、P、Q為頂點(diǎn)的四邊形是菱形?若存在,直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案