【題目】如圖,在△ABC中,AB=BC,點D在AB的延長線上.
(1)利用尺規(guī)按下列要求作圖,并在圖中標明相應(yīng)的字母(保留作圖痕跡,不寫作法). ①作∠CBD的平分線BM;
②作邊BC上的中線AE,并延長AE交BM于點F.
(2)由(1)得:BF與邊AC的位置關(guān)系是

【答案】
(1)解:①如圖所示:BM即為所求;

②如圖所示:AF即為所求


(2)BF∥AC
【解析】解:(2)∵AB=BC, ∴∠CAB=∠C,
∵∠C+∠CAB=∠CBD,∠CBM=∠MBD,
∴∠C=∠CBM,
∴BF∥AC.
【考點精析】利用三角形的外角和等腰三角形的性質(zhì)對題目進行判斷即可得到答案,需要熟知三角形一邊與另一邊的延長線組成的角,叫三角形的外角;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;等腰三角形的兩個底角相等(簡稱:等邊對等角).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某青年旅社有60間客房供游客居住,在旅游旺季,當客房的定價為每天200元時,所有客房都可以住滿.客房定價每提高10元,就會有1個客房空閑,對有游客入住的客房,旅社還需要對每個房間支出20/每天的維護費用,設(shè)每間客房的定價提高了x元.

(1)填表(不需化簡)

入住的房間數(shù)量

房間價格

總維護費用

提價前

60

200

60×20

提價后

  

  

  

(2)若該青年旅社希望每天純收入為14000元且能吸引更多的游客,則每間客房的定價應(yīng)為多少元?(純收入=總收入﹣維護費用)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中國“蛟龍”號深潛器目前最大深潛極限為7062.68米.某天該深潛器在海面下1800米的A點處作業(yè)(如圖),測得正前方海底沉船C的俯角為45°,該深潛器在同一深度向正前方直線航行2000米到B點,此時測得海底沉船C的俯角為60°.

(1)沉船C是否在“蛟龍”號深潛極限范圍內(nèi)?并說明理由;
(2)由于海流原因,“蛟龍”號需在B點處馬上上浮,若平均垂直上浮速度為2000米/時,求“蛟龍”號上浮回到海面的時間.(參考數(shù)據(jù): ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,分析下列四個結(jié)論: ①abc<0;②b2﹣4ac>0;③3a+c>0;④(a+c)2<b2 ,
其中正確的結(jié)論有(

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,AC⊥BD.若AD=4,BC=6,則梯形ABCD的面積是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點E是對角線AC上一點,且CE=CD,過點E作EF⊥AC交AD于點F,連接BE.
(1)求證:DF=AE;
(2)當AB=2時,求BE2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算下列各題
(1)計算: ﹣( 1+(π﹣ 0﹣(﹣1)100;
(2)已知|a+1|+(b﹣3)2=0,求代數(shù)式( )÷ 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點A為圓心,BC長為半徑畫弧交AB于點D,分別以點A、D為圓心,AB長為半徑畫弧,兩弧交于點E,連接AE,DE,則∠EAD的余弦值是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的對角線AC,BD相交于點O,延長CB至點F,使CF=CA,連接AF,∠ACF的平分線分別交AF,AB,BD于點E,N,M,連接EO.
(1)已知BD= ,求正方形ABCD的邊長;
(2)猜想線段EM與CN的數(shù)量關(guān)系并加以證明.

查看答案和解析>>

同步練習冊答案