【題目】如圖,為直徑,是上一點(diǎn),于點(diǎn),弦與交于點(diǎn),過點(diǎn)作,使,交的延長線于點(diǎn).過點(diǎn)作的切線交的延長線于點(diǎn).
(1)求證:是的切線;
(2)若,,求弧的長;
(3)若,,求的長.
【答案】(1)證明見解析;(2);(3)6.
【解析】
(1)連接OD,如圖,先證明∠3=∠1,再證明∠C=∠4,然后利用∠3+∠C=90°得到∠1+∠4=90°,則OD⊥DE,然后根據(jù)切線的判定定理即可得到結(jié)論;
(2)由切線的性質(zhì)得∠OAG=90°,則利用四邊形內(nèi)角和可計(jì)算出∠AOD=130°,然后根據(jù)弧長公式可計(jì)算出弧的長;
(3)設(shè)OF=x,則OB=3x,則可表示出BF=2x,再利用∠1=∠2得到ED=EF=2x+4,然后在Rt△ODE中,根據(jù)勾股定理得到(3x)2+(2x+4)2=(4+3x)2,再解方程求出x即可得到OB的長.
(1)連接OD.如圖,∵∠1=∠2,而∠2=∠3,∴∠3=∠1.
∵OC⊥AB,∴∠3+∠C=90°,∴∠1+∠C=90°.
∵OC=OD,∴∠C=∠4,∴∠1+∠4=90°,即∠ODE=90°,∴OD⊥DE,∴GE是⊙O的切線;
(2)∵AG為切線,∴AG⊥AB,∴∠OAG=90°,而∠ODG=90°,∴∠AOD=180°﹣50°=130°,∴弧的長==π;
(3)設(shè)OF=x,則OB=3x,∴BF=2x.
∵∠1=∠2,∴ED=EF=2x+4.
在Rt△ODE中,∵OD2+DE2=OE2,∴(3x)2+(2x+4)2=(4+3x)2,解得:x=2,∴OB=3x=6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了響應(yīng)市委和市政府“綠色環(huán)保,節(jié)能減排”的號(hào)召,幸福商場用3300元購進(jìn)甲、乙兩種節(jié)能燈共計(jì)100只,很快售完.這兩種節(jié)能燈的進(jìn)價(jià)、售價(jià)如下表:
進(jìn)價(jià)(元/只) | 售價(jià)(元/只) | |
甲種節(jié)能燈 | 30 | 40 |
甲種節(jié)能燈 | 35 | 50 |
(1)求幸福商場甲、乙兩種節(jié)能燈各購進(jìn)了多少只?
(2)全部售完100只節(jié)能燈后,商場共計(jì)獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校創(chuàng)客小組進(jìn)行機(jī)器人跑步大賽,機(jī)器人小和小從同一地點(diǎn)同時(shí)出發(fā),小在跑到1分鐘的時(shí)候監(jiān)控到程序有問題,隨即開始進(jìn)行遠(yuǎn)程調(diào)試,到3分鐘的時(shí)候調(diào)試完畢并加速前進(jìn),最終率先到達(dá)終點(diǎn),測控小組記錄的兩個(gè)機(jī)器人行進(jìn)的路程與時(shí)間的關(guān)系如圖所示,則以下結(jié)論正確的有_________ (填序號(hào)).
①兩個(gè)機(jī)器人第一次相遇時(shí)間是在第2分鐘;
②小每分鐘跑50米;
③賽程總長200米;
④小到達(dá)終點(diǎn)的時(shí)候小距離終點(diǎn)還有20米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】制作一種產(chǎn)品,需先將材料加熱達(dá)到60 ℃后,再進(jìn)行操作.設(shè)該材料溫度為y(℃),從加熱開始計(jì)算的時(shí)間為x(min).據(jù)了解,當(dāng)該材料加熱時(shí),溫度y與時(shí)間x成一次函數(shù)關(guān)系;停止加熱進(jìn)行操作時(shí),溫度y與時(shí)間x成反比例關(guān)系(如圖).已知該材料在操作加熱前的溫度為15 ℃,加熱5分鐘后溫度達(dá)到60 ℃.
(1)分別求出將材料加熱和停止加熱進(jìn)行操作時(shí),y與x的函數(shù)關(guān)系式;
(2)根據(jù)工藝要求,當(dāng)材料的溫度低于15 ℃時(shí),須停止操作,那么從開始加熱到停止操作,共經(jīng)歷了多少時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,,,,分別與相切于,,三點(diǎn),過點(diǎn)作的切線交于點(diǎn),切點(diǎn)為,則的長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90,點(diǎn)D、E分別是邊AB、AC的中點(diǎn),延長DE至F,使得AF//CD,連接BF、CF。求證:四邊形AFCD是菱形。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)y=﹣x+2的圖象與x軸,y軸分別交于點(diǎn)A,B,與函數(shù)y=x+b的圖象交于點(diǎn)C(﹣2,m).
(1)求m和b的值;
(2)函數(shù)y=x+b的圖象與x軸交于點(diǎn)D,點(diǎn)E從點(diǎn)D出發(fā)沿DA方向,以每秒2個(gè)單位長度勻速運(yùn)動(dòng)到點(diǎn)A(到A停止運(yùn)動(dòng)).設(shè)點(diǎn)E的運(yùn)動(dòng)時(shí)間為t秒.
①當(dāng)△ACE的面積為12時(shí),求t的值;
②在點(diǎn)E運(yùn)動(dòng)過程中,是否存在t的值,使△ACE為直角三角形?若存在,直接寫出t的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知頂點(diǎn)為(-3,-6)的拋物線經(jīng)過點(diǎn)(-1,-4),下列結(jié)論中錯(cuò)誤的是( )
A.
B. 若點(diǎn)(-2, ),(-5, ) 在拋物線上,則
C.
D. 關(guān)于的一元二次方程的兩根為-5和-1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點(diǎn)D是BC邊的中點(diǎn),BD=2,tanB=.
(1)求AD和AB的長;
(2)求sin∠BAD的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com