【題目】某景區(qū)在同一線路上順次有三個景點A,B,C,甲、乙兩名游客從景點A出發(fā),甲步行到景點C;乙花20分鐘時間排隊后乘觀光車先到景點B,在B處停留一段時間后,再步行到景點C.甲、乙兩人離景點A的路程s(米)關(guān)于時間t(分鐘)的函數(shù)圖像如圖所示.

(1)甲的速度是 米/分鐘;

(2)當(dāng)20≤t ≤30時,求乙離景點A的路程s與t的函數(shù)表達式;

(3)乙出發(fā)后多長時間與甲在途中相遇?

(4)若當(dāng)甲到達景點C時,乙與景點C的路程為360米,則乙從景點B步行到景點C的速度是多少?

【答案】(1)60;(2)s=300t-6000;(3)乙出發(fā)5分鐘和30分鐘時與甲在途中相遇;(4)乙從景點B步行到景點C的速度是68米/分鐘.

【解析】

(1)觀察圖像得出路程和時間,即可解決問題

(2)利用待定系數(shù)法求一次函數(shù)解析式即可;

(3)分兩種情況討論即可;

(4)設(shè)乙從B步行到C的速度是x米/分鐘,根據(jù)當(dāng)甲到達景點C時,乙與景點C的路程為360米,所用的時間為(90-60)分鐘,列方程求解即可

1甲的速度為60/分鐘

2)當(dāng)20t 30,設(shè)s=mtn,由題意得解得,所以s=300t6000

3)①當(dāng)20t 30時,60t=300t6000,解得:t=252520=5;

②當(dāng)30t 60時,60t=3000,解得:t=50,5020=30.

綜上所述:乙出發(fā)5分鐘和30分鐘時與甲在途中相遇

4)設(shè)乙從B步行到C的速度是x米/分鐘,由題意得:

54003000-(9060x=360

解得:x=68

答:乙從景點B步行到景點C的速度是68米/分鐘.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,對稱軸為x=,且經(jīng)過點(2,0),有下列說法:①abc<0;②a+b=0;③a﹣b+c=0;④若(0,y1),(1,y2)是拋物線上的兩點,則y1=y2.上述說法正確的是(

A.①②③④ B.③④ C.①③④ D.①②

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC和△DEF中,ABDE,∠A=∠D,要使△ABC≌△DEF,必須增加的一個條件是_____(填寫一個即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知是線段上的任意一點(端點除外),分別以為斜邊并且在的同一側(cè)作等腰直角,連接于點,連接于點,給出以下三個結(jié)論:①;;,其中正確結(jié)論的個數(shù)是(

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙OC的中點,BC=,OAB的距離為1,則半徑的長(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB=16,OAB中點,點C在線段OB上(不與點OB重合),將OC繞點O逆時針旋轉(zhuǎn)270°后得到扇形COD,AP,BQ分別切優(yōu)弧于點P,Q,且點P, QAB異側(cè),連接OP

(1)求證:APBQ

(2)當(dāng)BQ=4時,求扇形COQ的面積及的長(結(jié)果保留π);

(3)若APO的外心在扇形COD的內(nèi)部,請直接寫出OC的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸相交于A3,0、B1,0兩點,與y軸相交于點C0,3,點C、D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點B、D

1求D點坐標(biāo);

2求二次函數(shù)的解析式;

3根據(jù)圖象直接寫出使一次函數(shù)值小于二次函數(shù)值的x的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠A=72°BCD=31°,CD平分∠ACB

1)求∠B的度數(shù);

2)求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形OABC的頂點A(-8,0)、C(0,6),點D是BC邊上的中點,拋物線y=ax2+bx經(jīng)過A、D兩點,如圖所示.

(1)求點D關(guān)于y軸的對稱點D′的坐標(biāo)及a、b的值;

(2)在y軸上取一點P,使PA+PD長度最短,求點P的坐標(biāo);

(3)將拋物線y=ax2+bx向下平移,記平移后點A的對應(yīng)點為A1,點D的對應(yīng)點為D1,當(dāng)拋物線平移到某個位置時,恰好使得點O是y軸上到A1、D1兩點距離之和OA1+OD1最短的一點,求此拋物線的解析式.

查看答案和解析>>

同步練習(xí)冊答案