【題目】如圖,已知拋物線的對稱軸為直線,且經(jīng)、兩點.

求拋物線的解析式;

在拋物線的對稱軸上,是否存在點,使它到點的距離與到點的距離之和最小,如果存在求出點的坐標,如果不存在請說明理由.

【答案】(1);(2)存在.(-1,-2).

【解析】

1)利用待定系數(shù)法即可求得函數(shù)的解析式;
(2)拋物線與x軸的除A外的另一個交點C就是A的對稱點,則BC與對稱軸的交點就是M,首先求得C的坐標,然后求得BC的解析式,進而求得M的坐標.

解:根據(jù)題意得:, 解得:,

則二次函數(shù)的解析式是;

存在.

設(shè)拋物線與軸的另一個交點是,由拋物線的對稱性得與對稱軸的交點就是

點的坐標是,

設(shè)直線的解析式是,則

解得,

∴直線的解析式是

時,,

∴點的坐標是

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某校八年級學生小麗、小強和小紅到某超市參加了社會實踐活動,在活動中他們參與了某種水果的銷售工作,已知該水果的進價為8/千克,下面是他們在活動結(jié)束后的對話.

小麗:如果以10/千克的價格銷售,那么每天可售出300千克.

小強:如果以13/千克的價格銷售,那么每天可售出240千克.

小紅:通過調(diào)查驗證,我發(fā)現(xiàn)每天的銷售量y(千克)與銷售單價x(元)之間存在一次函數(shù)關(guān)系,每天銷售200千克以上.

(1)求每天的銷售量y(千克)與銷售單價x(元)之間的函數(shù)關(guān)系式;

(2)該超市銷售這種水果每天獲取的利潤達到1040元,那么銷售單價為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】五一期間,小明一家一起去旅游,如圖是小明設(shè)計的某旅游景點的圖紙(網(wǎng)格是由相同的小正方形組成的,且小正方形的邊長代表實際長度100m),在該圖紙上可看到兩個標志性景點A,B.若建立適當?shù)钠矫嬷苯亲鴺讼,則點A(-3,1),B(-3,-3),第三個景點C(3,2)的位置已破損.

(1)請在圖中標出景點C的位置;

(2)小明想從景點B開始游玩,途經(jīng)景點A,最后到達景點C,求小明一家最短的行走路程(參考數(shù)據(jù):≈6,結(jié)果保留整數(shù)).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于一個關(guān)于的代數(shù)式,若存在一個系數(shù)為正數(shù)關(guān)于的單項式,使 的結(jié)果是所有系數(shù)均為整數(shù)的整式,則稱單項式為代數(shù)式的“整系單項式” ,例如:

時,由于 ,故的整系單項式;

時,由于 ,故的整系單項式;

時,由于 ,故的整系單項式;

時,由于 ,故的整系單項式;

顯然,當代數(shù)式存在整系單項式時,有無數(shù)個,現(xiàn)把次數(shù)最低,系數(shù)最小的整系單項式記為 ,例如: .

閱讀以上材料并解決下列問題:

.判斷:當 時, 的整系單項式(填“是”或“不是”);

. 時, = ;

.解方程:.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】要建一個如圖所示的面積為300 的長方形圍欄,圍欄總長50m,一邊靠墻(墻長25m),

(1)求圍欄的長和寬;

(2)能否圍成面積為400 的長方形圍欄?如果能,求出該長方形的長和寬,如果不能請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸于、兩點,交軸于點,頂點為,其對稱軸交軸于點.直線經(jīng)過、兩點,交拋物線的對稱軸于點,其中點的橫坐標為

(1)求拋物線的表達式;

(2)連接,求的周長;

(3)是拋物線位于直線的下方且在其對稱軸左側(cè)上的一點,當四邊形的面積最大時,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某電信公司提供了,兩種方案的移動通訊費用(元)與通話時間(分)之間的關(guān)系,則以下說法正確的是(

①若通話時間少于120分,則方案比方案便宜

②若通話時間超過200分,則方案比方案便宜

③通訊費用為60元,則方案比方案的通話時間多

④當通話時間是170分鐘/時,兩種方案通訊費用相等

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y1=(x2)2m與x軸交于點A和B,與y軸交于點C,點D是點C關(guān)于拋物線對稱軸的對稱點,若點A的坐標為(1,0),直線y2=kx+b經(jīng)過點A,D.

(1)求拋物線的函數(shù)解析式;

(2)求點D的坐標和直線AD的函數(shù)解析式;

(3)根據(jù)圖象指出,當x取何值時,y2>y1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了創(chuàng)建全國衛(wèi)生城市,某社區(qū)要清理一個衛(wèi)生死角內(nèi)的垃圾,租用甲、乙兩車運送,兩車各運12趟可完成,需支付運費4800元.已知甲、乙兩車單獨運完此堆垃圾,乙車所運趟數(shù)是甲車的2倍,且乙車每趟運費比甲車少200元.

(1)求甲、乙兩車單獨運完此堆垃圾各需運多少趟?

(2)若單獨租用一臺車,租用哪臺車合算?

查看答案和解析>>

同步練習冊答案