【題目】閱讀與思考:

整式乘法與因式分解是方向相反的變形,由 ,

可得

利用這個(gè)式子可以將某些二次項(xiàng)系數(shù)是1的二次三項(xiàng)式分解因式.

例如:將式子分解因式.

這個(gè)式子的常數(shù)項(xiàng),一次項(xiàng)系,

所以

解:

上述分解因式的過程,也可以用十字相乘的形式形象地表示:先分解二次項(xiàng)系數(shù),分別寫在十字交叉線的左上角和左下角;再分解常數(shù)項(xiàng),分別寫在十字交叉線的右上角和右下角;然后交叉相乘,求代數(shù)和,使其等于一次項(xiàng)系數(shù)(如右圖).

請仿照上面的方法,解答下列問題:

(1)分解因式:=___________________;

(2)若可分解為兩個(gè)一次因式的積,則整數(shù)P的所有可能值是________.

【答案】(1) (2)

【解析】

1)原式利用題中的方法分解即可;
2)找出所求滿足題意p的值即可.

1)原式=x-2(x-3);

(2) 8=1×8;8=8×(-1);8=2×(-4)8=4×2,

p的可能值為1+(-8)=-9;8+1=9;2+(-4)=-6;4+2=6.

故答案為:96.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E點(diǎn)為DF上的點(diǎn),BAC上的點(diǎn),∠1=∠2,∠C=∠D,那么DFAC,請完成它成立的理由

∵∠1=∠2,∠2=∠3 ,∠1=∠4(

∴∠3=∠4(

∴________∥_______ (

∴∠C=∠ABD

∵∠C=∠D

∴∠D=∠ABD

DFAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°AD平分∠CAB,交CB于點(diǎn)D,過點(diǎn)DDEAB,于點(diǎn)E

1)求證:△ACD≌△AED;

2)若∠B=30°,CD=1,求BD的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:拋物線 與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.點(diǎn)P為線段BC上一點(diǎn),過點(diǎn)P作直線ι⊥x軸于點(diǎn)F,交拋物線 于點(diǎn)E.

(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)當(dāng)點(diǎn)P在線段BC上運(yùn)動(dòng)時(shí),求線段PE長的最大值;
(3)當(dāng)PE取最大值時(shí),把拋物線 向右平移得到拋物線 ,拋物線 與線段BE交于點(diǎn)M,若直線CM把△BCE的面積分為1:2兩部分,則拋物線 應(yīng)向右平移幾個(gè)單位長度可得到拋物線 ?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)課上,王老師布置如下任務(wù):如圖,△ABC中,BC>AB>AC,在BC邊上取一點(diǎn)P,使∠APC=2∠ABC.

小路的作法如下:

① 作AB邊的垂直平分線,交BC于點(diǎn)P,交AB于點(diǎn)Q;

② 連結(jié)AP.

請你根據(jù)小路同學(xué)的作圖方法,利用直尺和圓規(guī)完成作圖(保留作圖痕跡);并完成以下推理,注明其中蘊(yùn)含的數(shù)學(xué)依據(jù):

∵ PQ是AB的垂直平分線

∴ AP= , (依據(jù): );

∴ ∠ABC= , (依據(jù): ).

∴ ∠APC=2∠ABC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算下列各題:

1)(﹣12018+32﹣(π3.140

2)(x+32x2

3)(x+2)(3xy)﹣3xx+y

4)(2x+y+1)(2x+y1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某一工程招標(biāo)時(shí),接到甲.乙兩工程隊(duì)的投標(biāo)書,每施工一天,需付甲工程隊(duì)工程款1.5萬元,乙工程隊(duì)工程款1.1萬元.目前有三種施工方案:

方案一:甲隊(duì)單獨(dú)完成此項(xiàng)工程剛好如期完成;

方案二:乙隊(duì)單獨(dú)完成此項(xiàng)工程比規(guī)定日期多5天;

方案三:若甲.乙兩隊(duì)合作4天,剩下的工程由乙隊(duì)單獨(dú)做也正好如期完成.

哪一種方案既能如期完工又最節(jié)省工程款?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:P、Q分別是兩條線段a和b上任意一點(diǎn),線段PQ的長度的最小值叫做線段a與線段b的距離.
已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐標(biāo)系中四點(diǎn).

(1)根據(jù)上述定義,當(dāng)m=2,n=2時(shí),如圖1,線段BC與線段OA的距離是;當(dāng)m=5,n=2時(shí),如圖2,線段BC與線段OA的距離為;

(2)如圖3,若點(diǎn)B落在圓心為A,半徑為2的圓上,線段BC與線段OA的距離記為d,求d關(guān)于m的函數(shù)解析式.

(3)當(dāng)m的值變化時(shí),動(dòng)線段BC與線段OA的距離始終為2,線段BC的中點(diǎn)為M,
①求出點(diǎn)M隨線段BC運(yùn)動(dòng)所圍成的封閉圖形的周長;
②點(diǎn)D的坐標(biāo)為(0,2),m≥0,n≥0,作MH⊥x軸,垂足為H,是否存在m的值使以A、M、H為頂點(diǎn)的三角形與△AOD相似?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠C=90°,

(1)a=4,b=3,則c=_______;

(2)a=24,c=30,則b=_______;

(3)BC=11,AB=61,則AC=_______

查看答案和解析>>

同步練習(xí)冊答案