【題目】閱讀與思考:
整式乘法與因式分解是方向相反的變形,由 ,
可得 .
利用這個(gè)式子可以將某些二次項(xiàng)系數(shù)是1的二次三項(xiàng)式分解因式.
例如:將式子分解因式.
這個(gè)式子的常數(shù)項(xiàng),一次項(xiàng)系,
所以.
解: .
上述分解因式的過程,也可以用十字相乘的形式形象地表示:先分解二次項(xiàng)系數(shù),分別寫在十字交叉線的左上角和左下角;再分解常數(shù)項(xiàng),分別寫在十字交叉線的右上角和右下角;然后交叉相乘,求代數(shù)和,使其等于一次項(xiàng)系數(shù)(如右圖).
請仿照上面的方法,解答下列問題:
(1)分解因式:=___________________;
(2)若可分解為兩個(gè)一次因式的積,則整數(shù)P的所有可能值是________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E點(diǎn)為DF上的點(diǎn),B為AC上的點(diǎn),∠1=∠2,∠C=∠D,那么DF∥AC,請完成它成立的理由
∵∠1=∠2,∠2=∠3 ,∠1=∠4( )
∴∠3=∠4( )
∴________∥_______ ( )
∴∠C=∠ABD( )
∵∠C=∠D( )
∴∠D=∠ABD( )
∴DF∥AC( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點(diǎn)D,過點(diǎn)D作DE⊥AB,于點(diǎn)E
(1)求證:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:拋物線 與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.點(diǎn)P為線段BC上一點(diǎn),過點(diǎn)P作直線ι⊥x軸于點(diǎn)F,交拋物線 于點(diǎn)E.
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)當(dāng)點(diǎn)P在線段BC上運(yùn)動(dòng)時(shí),求線段PE長的最大值;
(3)當(dāng)PE取最大值時(shí),把拋物線 向右平移得到拋物線 ,拋物線 與線段BE交于點(diǎn)M,若直線CM把△BCE的面積分為1:2兩部分,則拋物線 應(yīng)向右平移幾個(gè)單位長度可得到拋物線 ?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,王老師布置如下任務(wù):如圖,△ABC中,BC>AB>AC,在BC邊上取一點(diǎn)P,使∠APC=2∠ABC.
小路的作法如下:
① 作AB邊的垂直平分線,交BC于點(diǎn)P,交AB于點(diǎn)Q;
② 連結(jié)AP.
請你根據(jù)小路同學(xué)的作圖方法,利用直尺和圓規(guī)完成作圖(保留作圖痕跡);并完成以下推理,注明其中蘊(yùn)含的數(shù)學(xué)依據(jù):
∵ PQ是AB的垂直平分線
∴ AP= , (依據(jù): );
∴ ∠ABC= , (依據(jù): ).
∴ ∠APC=2∠ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算下列各題:
(1)(﹣1)2018+3﹣2﹣(π﹣3.14)0
(2)(x+3)2﹣x2
(3)(x+2)(3x﹣y)﹣3x(x+y)
(4)(2x+y+1)(2x+y﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某一工程招標(biāo)時(shí),接到甲.乙兩工程隊(duì)的投標(biāo)書,每施工一天,需付甲工程隊(duì)工程款1.5萬元,乙工程隊(duì)工程款1.1萬元.目前有三種施工方案:
方案一:甲隊(duì)單獨(dú)完成此項(xiàng)工程剛好如期完成;
方案二:乙隊(duì)單獨(dú)完成此項(xiàng)工程比規(guī)定日期多5天;
方案三:若甲.乙兩隊(duì)合作4天,剩下的工程由乙隊(duì)單獨(dú)做也正好如期完成.
哪一種方案既能如期完工又最節(jié)省工程款?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:P、Q分別是兩條線段a和b上任意一點(diǎn),線段PQ的長度的最小值叫做線段a與線段b的距離.
已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐標(biāo)系中四點(diǎn).
(1)根據(jù)上述定義,當(dāng)m=2,n=2時(shí),如圖1,線段BC與線段OA的距離是;當(dāng)m=5,n=2時(shí),如圖2,線段BC與線段OA的距離為;
(2)如圖3,若點(diǎn)B落在圓心為A,半徑為2的圓上,線段BC與線段OA的距離記為d,求d關(guān)于m的函數(shù)解析式.
(3)當(dāng)m的值變化時(shí),動(dòng)線段BC與線段OA的距離始終為2,線段BC的中點(diǎn)為M,
①求出點(diǎn)M隨線段BC運(yùn)動(dòng)所圍成的封閉圖形的周長;
②點(diǎn)D的坐標(biāo)為(0,2),m≥0,n≥0,作MH⊥x軸,垂足為H,是否存在m的值使以A、M、H為頂點(diǎn)的三角形與△AOD相似?若存在,求出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠C=90°,
(1)若a=4,b=3,則c=_______;
(2)若a=24,c=30,則b=_______;
(3)若BC=11,AB=61,則AC=_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com