【題目】如圖,在△ABC中,∠ACB90°,過點CCDABD,∠A30°,BD1,則AB的值是(  ).

A.1B.2C.3D.4

【答案】D

【解析】

在直角三角形ABC中,由∠A的度數(shù)求出∠B的度數(shù),在直角三角形BCD中,可得出∠BCD度數(shù)為30°,根據(jù)直角三角形中,30°所對的直角邊等于斜邊的一半,得到BC=2BD,由BD的長求出BC的長,在直角三角形ABC中,同理得到AB=2BC,由BC的長即可求出AB的長.

∵△ABC中,∠ACB=90°,∠A=30°,
∴∠B=60°,又CDAB,
∴∠BCD=30°
RtBCD中,∠BCD=30°BD=1,
可得BC=2BD=2,
RtABC中,∠A=30°,BC=2,
AB=2BC=4
故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,三角形ABC中,A、B、C的坐標(biāo)分別為A(﹣1,2),B(﹣3,﹣2),C1,﹣1),將ABC向上平移3個單位,再向右平移2個單位.

1)作出平移后的A1B1C1,并寫出A1B1,C1的坐標(biāo).

2)求A1B1C1的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表為某班學(xué)生成績的次數(shù)分配表.已知全班共有人,且眾數(shù)為分,中位數(shù)為分,則之值為________

成績

(分)

次數(shù)

(人)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形中,,,將繞點逆時針旋轉(zhuǎn),延長于點

求證:四邊形是矩形;

,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列一段文字,然后回答下列問題.

已知在平面內(nèi)有兩點P1 x1,y1 ,P1 x2y2 其兩點間的距離P1P2 = ,同時,當(dāng)兩點所在的直線在坐標(biāo)軸或平行于坐標(biāo)軸或垂直于坐標(biāo)軸時,兩點間距離公式可化簡為|x2 x1||y2 y1|.

(1)已知 A (1,4)、B (-3,5),試求 A.、B兩點間的距離;

(2)已知 A、B在平行于 y軸的直線上,點 A的縱坐標(biāo)為-8,點 B的縱坐標(biāo)為-1,試求 A、B兩點的距 離;

(3)已知一個三角形各頂點坐標(biāo)為 D(16)、E(-22)、F(42),你能判定此三角形的形狀嗎?說明理由:

(4)(3)的條件下,平面直角坐標(biāo)系中,在 x軸上找一點 P,使 PD+PF的長度最短,求出點 P的坐 標(biāo)以及 PD+PF的最短長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為發(fā)展學(xué)生的核心素養(yǎng),培養(yǎng)學(xué)生的綜合能力,某學(xué)校計劃開設(shè)四門選修課:樂器、舞蹈、繪畫、書法,學(xué)校采取隨機抽樣的方法進(jìn)行問卷調(diào)查每個被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門對調(diào)查結(jié)果進(jìn)行整理,繪制成如下兩幅不完整的統(tǒng)計圖請結(jié)合圖中所給信息解答下列問題:

本次調(diào)查的學(xué)生共有______人,在扇形統(tǒng)計圖中,m的值是______

分別求出參加調(diào)查的學(xué)生中選擇繪畫和書法的人數(shù),并將條形統(tǒng)計圖補充完整.

該校共有學(xué)生2000人,估計該校約有多少人選修樂器課程?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是等腰三角形,ABAC,點DAB上一點,過點DDEBCBC于點E,交CA延長線于點F

1)證明:ADF是等腰三角形;

2)若∠B60°,BD4,AD2,求EC的長,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在長方形中,BC=3,動點出發(fā),以每秒1個單位的速度,沿射線方向移動,作關(guān)于直線的對稱,設(shè)點的運動時間為

1)當(dāng)P點在線段BC上且不與C點重合時,若直線PB’與直線CD相交于點M,且∠PAM=45°,試求:AB的長

2)若AB=4

①如圖2,當(dāng)點B’落在AC上時,顯然PCB’是直角三角形,求此時t的值

②是否存在異于圖2的時刻,使得PCB’是直角三角形?若存在,請直接寫出所有符合題意的t的值?若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,為測量池塘寬度AB,可在池塘外的空地上取任意一點O,連接AOBO,并分別延長至點C,D,使OCOA,ODOB,連接CD

1)求證:ABCD;

2)如圖2,受地形條件的影響,于是采取以下措施:延長AO至點C,使OCOA,過點CAB的平行線CE,延長BO至點F,連接EF,測得∠CEF140°,∠OFE110°,CE11m,EF10m,請直接寫出池塘寬度AB

查看答案和解析>>

同步練習(xí)冊答案