【題目】如圖,ABC中,∠ACB=90°,∠ABC=22.5°,將ABC 繞著點(diǎn)C順時(shí)針旋轉(zhuǎn),使得點(diǎn)A的對應(yīng)點(diǎn)D落在邊BC上,點(diǎn)B的對應(yīng)點(diǎn)是點(diǎn)E,連接BE.下列說法中,正確的有( 。

DEAB ②∠BCE是旋轉(zhuǎn)角 ③∠BED=30° BDECDE面積之比是:1

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

【答案】C

【解析】

延長EDAB于點(diǎn)F,連接AD,根據(jù)直角三角形兩銳角互余可得∠BAC=67.5°,根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠BCE=∠ACD=90°,∠BCE是旋轉(zhuǎn)角,CD=AC,CE=CB,∠CED=ABC=22.5°,繼而可得 ∠AFE=90°,即DEAB,可得∠DAC=∠ADC=45°,∠CBE=∠CEB=45°AD=,從而可得 ∠BAD=22.5°,∠BED=22.5°,從而可得 BD=AD=CD,得到BDECDE面積之比是:1,據(jù)此即可得出正確答案.

延長EDAB于點(diǎn)F,連接AD,

∠ACB=90°,∠ABC=22.5°,

∠BAC=90°-ABC=67.5°

∵將ABC 繞著點(diǎn).順時(shí)針旋轉(zhuǎn),使得點(diǎn)A的對應(yīng)點(diǎn)D落在邊BC上,點(diǎn)B的對應(yīng)點(diǎn)是點(diǎn)E,

∴∠BCE=∠ACD=90°,∠BCE是旋轉(zhuǎn)角,CD=ACCE=CB,∠CED=ABC=22.5°,

∠CED+∠BAC=90°,∴∠AFE=90°,即DEAB,

∵∠BCE=∠ACD=90°,CD=ACCE=CB,

∠DAC=∠ADC=45°∠CBE=∠CEB=45°,AD=,

∠BAD=67.5°-45°=22.5°,∠BED=∠BEC-∠DEC=45°-22.5°=22.5°,

∠BAD=∠ABD,

BD=AD=CD,

BDECDE面積之比是BDCD=:1

綜上可知,正確的是①②④,共3個(gè),

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=kx+b的圖象交于A,B兩點(diǎn),點(diǎn)A的坐標(biāo)為(2,6),點(diǎn)B的坐標(biāo)為(n,1).

(1)求反比例函數(shù)與一次函數(shù)的表達(dá)式;

(2)點(diǎn)E為y軸上一個(gè)動(dòng)點(diǎn),若SAEB=10,求點(diǎn)E的坐標(biāo).

3)結(jié)合圖像寫出不等式的解集;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,AD∥BC∠B=90°,AG∥CDBC于點(diǎn)G,點(diǎn)E、F分別為AGCD的中點(diǎn),連接DEFG

1)求證:四邊形DEGF是平行四邊形;

2)當(dāng)點(diǎn)GBC的中點(diǎn)時(shí),求證:四邊形DEGF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若有理數(shù)ab滿足條件:m是整數(shù)),則稱有理數(shù)ab為一對共享數(shù),其中整數(shù)ma,b共享因子

1)下列兩對數(shù)中:①35,②68,是一對共享數(shù)的是   ;(填序號)

2)若7x是一對共享數(shù),且共享因子2,求x的值;

3)探究:當(dāng)有理數(shù)ab滿足什么條件時(shí),a,b是一對共享數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:把RtABCRtDEF按如圖(1)擺放(點(diǎn)C與點(diǎn)E重合),點(diǎn)B、C(E)、F在同一條直線上,∠ACB=EDF=90°,DEF=45°,AC=8cm,BC=6cm,EF=9cm.如圖(2),DEF從圖(1)的位置出發(fā),以1cm/s的速度沿CBABC勻速移動(dòng),在DEF移動(dòng)的同時(shí),點(diǎn)PABC的頂點(diǎn)B出發(fā),以2cm/s的速度沿BA勻速移動(dòng),當(dāng)DEF的頂點(diǎn)D移動(dòng)到AC邊上時(shí),DEF停止移動(dòng),點(diǎn)P也隨之停止移動(dòng),DEAC相交于點(diǎn)Q,連接PQ,設(shè)移動(dòng)時(shí)間為t(s)(0<t<4.5).

解答下列問題:

(1)當(dāng)t為何值時(shí),點(diǎn)A在線段PQ的垂直平分線上?

(2)連接PE,設(shè)四邊形APEC的面積為y(cm2),求yt之間的函數(shù)關(guān)系式,是否存在某一時(shí)刻t,使面積y最?若存在,求出y的最小值;若不存在,說明理由;

(3)是否存在某一時(shí)刻t,使P、Q、F三點(diǎn)在同一條直線上?若存在,求出此時(shí)t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,的兩邊分別平行.

1)在圖①中,的數(shù)量關(guān)系是什么?為什么?

2)在圖②中,的數(shù)量關(guān)系是什么?為什么?

3)由(1)(2)可得結(jié)論:________

4)應(yīng)用:若兩個(gè)角的兩邊兩兩互相平行,其中一個(gè)角比另一個(gè)角的2倍少,求這兩個(gè)角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的面積為10cm2,它的兩條對角線交于點(diǎn)O1,以ABAO1為兩鄰邊作平行四邊形ABC1O1,平行四邊形ABC1O1的對角線交于點(diǎn)O2,同樣以ABAO2為兩鄰邊作平行四邊形ABC2O2,,依此類推,則平行四邊形ABCnOn的面積為( )

A. cm2B. cm2C. cm2D. cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某社區(qū)超市第一次用6000元購進(jìn)甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的倍多15件,甲、乙兩種商品的進(jìn)價(jià)和售價(jià)如下表:(注:獲利=售價(jià)﹣進(jìn)價(jià))

進(jìn)價(jià)(元/件)

22

30

售價(jià)(元/件)

29

40

(1)該超市購進(jìn)甲、乙兩種商品各多少件?

(2)該超市將第一次購進(jìn)的甲、乙兩種商品全部賣完后一共可獲得多少利潤?

(3)該超市第二次以第一次的進(jìn)價(jià)又購進(jìn)甲、乙兩種商品,其中甲商品的件數(shù)不變,乙商品的件數(shù)是第一次的3倍;甲商品按原價(jià)銷售,乙商品打折銷售,第二次兩種商品都銷售完以后獲得的總利潤比第一次獲得的總利潤多180元,求第二次乙商品是按原價(jià)打幾折銷售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y=﹣x+b的圖象過點(diǎn)A(0,3),點(diǎn)p是該直線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P分別作PM垂直x軸于點(diǎn)M,PN垂直y軸于點(diǎn)N,在四邊形PMON上分別截。篜C=MP,MB=OM,OE=ON,ND=NP.

(1)b=  

(2)求證:四邊形BCDE是平行四邊形;

(3)在直線y=﹣x+b上是否存在這樣的點(diǎn)P,使四邊形BCDE為正方形?若存在,請求出所有符合的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案