【題目】如圖,在菱形ABCD中,按以下步驟作圖:
①分別以點A和B為圓心,以大于AB的長為半徑作弧,兩弧相交于點E、F;
②作直線EF交BC于點G,連接AG;若AG⊥BC,CG=3,則AD的長為_______.
科目:初中數(shù)學 來源: 題型:
【題目】工廠甲、乙兩個部門各有員工400人,為了解這兩個部門員工的生產(chǎn)技能情況,進行了抽樣調(diào)查,請將下列過程補充完整:
收集數(shù)據(jù):
從甲、乙兩個部門各隨機抽取20名員工,進行了生產(chǎn)技能測試,測試成績(百分制)如下:
整理、描述數(shù)據(jù):
按如下分數(shù)段整理、描述這兩組樣本數(shù)據(jù):
成績 人數(shù) 部門 | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲 | 0 | 0 | 1 | 11 | 7 | 1 |
乙 |
(說明:成績80分及以上為生產(chǎn)技能優(yōu)秀,70—79分為生產(chǎn)技能良好,60—69分為生產(chǎn)技能合格,60分以下為生產(chǎn)技能不合格)
分析數(shù)據(jù):
兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如下表所示:
部門 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
甲 | 78.3 | 77.5 | |
乙 | 78 | 81 |
得出結(jié)論:
.估計乙部門生產(chǎn)技能優(yōu)秀的員工人數(shù)約為 .
.可以推斷出 部門員工的生產(chǎn)技能水平高.理由為 .
(至少從兩個不同的角度說明推斷的合理性)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:以下是我們教科書中的一段內(nèi)容,請仔細閱讀,并解答有關(guān)問題.
公元前3世紀,古希臘學家阿基米德發(fā)現(xiàn):若杠桿上的兩物體與支點的距離與其重量成反比,則杠桿平衡,后來人們把它歸納為“杠桿原理”,通俗地說,杠桿原理為:
阻力×阻力臂=動力×動力臂
(問題解決)
若工人師傅欲用撬棍動一塊大石頭,已知阻力和阻力臂不變,分別為1500N和0.4m.
(1)動力F(N)與動力臂l(m)有怎樣的函數(shù)關(guān)系?當動力臂為1.5m時,撬動石頭需要多大的力?
(2)若想使動力F(N)不超過題(1)中所用力的一半,則動力臂至少要加長多少?
(數(shù)學思考)
(3)請用數(shù)學知識解釋:我們使用棍,當阻力與阻力臂一定時,為什么動力臂越長越省力.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以AB為直徑的⊙O交∠BAD的角平分線于C,過C作CD⊥AD于D,交AB的延長線于E.
(1)求證:CD為⊙O的切線.
(2)若,求cos∠DAB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場銷售一批名牌襯衫,平均每天能售出20件,每件盈利40元。經(jīng)調(diào)查發(fā)現(xiàn):如果這種襯衫的售價每降低1元時,平均每天能多售出2件.設(shè)每件襯衫降價x元.
(1)降價后,每件襯衫的利潤為_____元,銷量為_____件;(用含x的式子表示)
(2)為了擴大銷售,盡快減少庫存,商場決定釆取降價措施。但需要平均每天盈利1200元,求每件襯衫應降價多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將矩形ABCD沿對角線BD翻折,點A落在點A′處,AD交BC于點E,點F在CD上,連接EF,且CE=3CF,如圖1.
(1)試判斷△BDE的形狀,并說明理由;
(2)若∠DEF=45°,求tan∠CDE的值;
(3)在(2)的條件下,點G在BD上,且不與B、D兩點重合,連接EG并延長到點H,使得EH=BE,連接BH、DH,將△BDH沿DH翻折,點B的對應點B′恰好落在EH的延長線上,如圖2.當BH=8時,求GH的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某大學為了解學生在A,B兩家餐廳用餐的滿意度,從在A,B兩家餐廳都用過餐的學生中隨機抽取了100人,每人分別對這兩家餐廳進行了評分,統(tǒng)計如下:
人數(shù) 滿意度評分 餐廳 | 非常滿意 | 較滿意 | 一般 | 不太滿意 | 非常不滿意 | 合計 |
A | 28 | 40 | 10 | 10 | 12 | 100 |
B | 25 | 20 | 45 | 6 | 4 | 100 |
若小蕓要在A,B兩家餐廳中選擇一家用餐,根據(jù)表格中數(shù)據(jù),你建議她去_____餐廳(填A或B),理由是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正方形中,為對角線上一點,過點作交于點,連接,為的中點,連接.
(1)如圖1,求證:;
(2)將圖1中的繞點逆時針旋轉(zhuǎn)45°,如圖2,取的中點,連接.問(1)中的結(jié)論是否仍然成立?若成立,給出證明;若不成立,請說明理由.
(3)將圖1中的繞點逆時計旋轉(zhuǎn)任意角度,如圖3,取的中點,連接.問(1)中的結(jié)論是否仍然成立?通過觀察你還能得出什么結(jié)論?(均不要求證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,直線l:y=﹣x+4與x軸交于點A,與y軸交于點B,以AB為直徑作⊙M,點P為線段OA上一動點(與點O、A不重合),作PC⊥AB于C,連結(jié)BP并延長交⊙O于點D.
(1)求點A,B的坐標和tan∠BAO的值;
(2)設(shè)=x,tan∠BPO=y.
①當x=1時,求y的值及點D的坐標;
②求y關(guān)于x的函數(shù)表達式;
(3)如圖2,連接OC,當點P在線段OA上運動時,求OCPD的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com