【題目】某種商品的成本是元,試銷階段每件商品的售價(jià)(元)與產(chǎn)品的銷售量(件)滿足當(dāng)時(shí),,當(dāng)時(shí),,且的一次函數(shù),為了獲得最大利潤(元),每件產(chǎn)品的銷售價(jià)應(yīng)定為(

A. 160 B. 180 C. 140 D. 200

【答案】A

【解析】

x=130時(shí),y=70,當(dāng)x=150時(shí),y=50,代入一函數(shù)解析式y=kx+b,進(jìn)而得出yx的關(guān)系式;利用利潤=銷量×每件利潤,進(jìn)而利用配方法求出函數(shù)最值.

設(shè)y=kx+b,(130,70),(150,50)代入得:

,

解得:,

yx之間的一次函數(shù)關(guān)系式為:y=x+200;

銷售利潤為S,由題意得:

S=(x120)y=+320x24000=+1600,

∴售價(jià)為160/件時(shí),獲最大利潤1600.

故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC,BAC=90°,AB=6,AC=8,P是斜邊BC上一動(dòng)點(diǎn),PEAB于點(diǎn)E,PFAC于點(diǎn)F,EFAP相交于點(diǎn)O,OF的最小值為 ( )

A. 4.8 B. 1.2

C. 3.6 D. 2.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等邊△ABC,延長△ABC的各邊分別到點(diǎn)D、EF使得AEBFCD,順次連接DE、F,求證:△DEF是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】郵政部門規(guī)定:信函重100克以內(nèi)(包括100克)每20克貼郵票0.8元,不足20克重以20克計(jì)算;超過100克,先貼郵票4元,超過100克部分每100克加貼郵票2元,不足100克重以100克計(jì)算.八(9)班有11位同學(xué)參加項(xiàng)目化學(xué)習(xí)知識(shí)競賽,若每份答卷重12克,每個(gè)信封重4克,將這11份答卷分裝在兩個(gè)信封中寄出,所貼郵票的總金額最少是_________元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)a、b、c為常數(shù)且a≠0)中的xy的部分對應(yīng)值如下表:

x

3

2

1

0

1

2

3

4

5

y

12

5

0

3

4

3

0

5

12

給出了結(jié)論:

1)二次函數(shù)有最小值,最小值為﹣3;

2)當(dāng)時(shí),y0;

3)二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn),且它們分別在y軸兩側(cè).

則其中正確結(jié)論的個(gè)數(shù)是

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABCD,ABBC,∠B60°,EBC邊上一點(diǎn).

1)如圖1,若EBC的中點(diǎn),∠AED60°,求證:CECD;

2)如圖2,若∠EAD60°,求證:△AED是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)你站在博物館的展覽廳中時(shí),你知道站在何處觀賞最理想嗎?如圖,設(shè)墻壁上的展品最高點(diǎn)P距地面2.5米,最低點(diǎn)Q距地面2米,觀賞者的眼睛F距地面1.6米,當(dāng)視角∠PEQ最大時(shí),站在此處觀賞最理想,則此時(shí)E到墻壁的距離為( )米.

A. 1 B. 0.6 C. 0.5 D. 0.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a、b、cABC中∠A、B、C的對邊,拋物線y=x2﹣2ax+b2x軸于M(a+c,0),則ABC是( 。

A. 等腰三角形 B. 等邊三角形 C. 直角三角形 D. 不確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC 中,ABAC,BO、CO 分別平分∠ABC、∠ACBDE 經(jīng)過點(diǎn) O, DEBCDE 分別交 AB、AC DE,則圖中等腰三角形的個(gè)數(shù)為( )

A.2B.3C.4D.5

查看答案和解析>>

同步練習(xí)冊答案