【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D、F分別在AB、AC上,CF=CB,連接CD,將線段CD繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)90°后得CE,連接EF.
(1)求證:△BCD≌△FCE;
(2)若EF∥CD,求∠BDC的度數(shù).
【答案】
(1)證明:∵將線段CD繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)90°后得CE,
∴CD=CE,∠DCE=90°,
∵∠ACB=90°,
∴∠BCD=90°﹣∠ACD=∠FCE,
在△BCD和△FCE中,
,
∴△BCD≌△FCE(SAS).
(2)解:由(1)可知△BCD≌△FCE,
∴∠BDC=∠E,∠BCD=∠FCE,
∴∠DCE=∠DCA+∠FCE=∠DCA+∠BCD=∠ACB=90°,
∵EF∥CD,
∴∠E=180°﹣∠DCE=90°,
∴∠BDC=90°.
【解析】(1)由旋轉(zhuǎn)的性質(zhì)可得:CD=CE,再根據(jù)同角的余角相等可證明∠BCD=∠FCE,再根據(jù)全等三角形的判定方法即可證明△BCD≌△FCE;(2)由(1)可知:△BCD≌△FCE,所以∠BDC=∠E,易求∠E=90°,進(jìn)而可求出∠BDC的度數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=8cm.BC=4cm,CD=5cm.動(dòng)點(diǎn)P從點(diǎn)B開始沿折線BC﹣CD﹣DA以1cm/s的速度運(yùn)動(dòng)到點(diǎn)A.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s),△PAB面積為S(cm2).
(1)當(dāng)t=2時(shí),求S的值;
(2)當(dāng)點(diǎn)P在邊DA上運(yùn)動(dòng)時(shí),求S關(guān)于t的函數(shù)表達(dá)式;
(3)當(dāng)S=12時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系xOy中,一次函數(shù)y=﹣ x+b(b為常數(shù),b>0)的圖象與x軸、y軸分別相交于點(diǎn)A、B,半徑為4的⊙O與x軸正半軸相交于點(diǎn)C,與y軸相交于點(diǎn)D、E,點(diǎn)D在點(diǎn)E上方.
(1)若直線AB與 有兩個(gè)交點(diǎn)F、G. ①求∠CFE的度數(shù);
②用含b的代數(shù)式表示FG2 , 并直接寫出b的取值范圍;
(2)設(shè)b≥5,在線段AB上是否存在點(diǎn)P,使∠CPE=45°?若存在,請(qǐng)求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,港口A在觀測站O的正東方向,OA=4km,某船從港口A出發(fā),沿北偏東15°方向航行一段距離后到達(dá)B處,此時(shí)從觀測站O處測得該船位于北偏東60°的方向,則該船航行的距離(即AB的長)為( )
A.4km
B.2 km
C.2 km
D.( +1)km
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=a(x2﹣2mx﹣3m2)(其中a,m是常數(shù),且a>0,m>0)的圖象與x軸分別交于點(diǎn)A、B(點(diǎn)A位于點(diǎn)B的左側(cè)),與y軸交于C(0,﹣3),點(diǎn)D在二次函數(shù)的圖象上,CD∥AB,連接AD,過點(diǎn)A作射線AE交二次函數(shù)的圖象于點(diǎn)E,AB平分∠DAE.
(1)用含m的代數(shù)式表示a;
(2)求證: 為定值;
(3)設(shè)該二次函數(shù)圖象的頂點(diǎn)為F,探索:在x軸的負(fù)半軸上是否存在點(diǎn)G,連接GF,以線段GF、AD、AE的長度為三邊長的三角形是直角三角形?如果存在,只要找出一個(gè)滿足要求的點(diǎn)G即可,并用含m的代數(shù)式表示該點(diǎn)的橫坐標(biāo);如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,自來水廠A和村莊B在小河l的兩側(cè),現(xiàn)要在A,B間鋪設(shè)一條輸水管道.為了搞好工程預(yù)算,需測算出A,B間的距離.一小船在點(diǎn)P處測得A在正北方向,B位于南偏東24.5°方向,前行1200m,到達(dá)點(diǎn)Q處,測得A位于北偏西49°方向,B位于南偏西41°方向.
(1)線段BQ與PQ是否相等?請(qǐng)說明理由;
(2)求A,B間的距離.(參考數(shù)據(jù)cos41°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】江漢平原享有“中國小龍蝦之鄉(xiāng)”的美稱,甲、乙兩家農(nóng)貿(mào)商店,平時(shí)以同樣的價(jià)格出售品質(zhì)相同的小龍蝦,“龍蝦節(jié)”期間,甲、乙兩家商店都讓利酬賓,付款金額y甲、y乙(單位:元)與原價(jià)x(單位:元)之間的函數(shù)關(guān)系如圖所示:
(1)直接寫出y甲 , y乙關(guān)于x的函數(shù)關(guān)系式;
(2)“龍蝦節(jié)”期間,如何選擇甲、乙兩家商店購買小龍蝦更省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,自左至右,第1個(gè)圖由1個(gè)正六邊形、6個(gè)正方形和6個(gè)等邊三角形組成;第2個(gè)圖由2個(gè)正六邊形、11個(gè)正方形和10個(gè)等邊三角形組成;第3個(gè)圖由3個(gè)正六邊形、16個(gè)正方形和14個(gè)等邊三角形組成;…按照此規(guī)律,第n個(gè)圖中正方形和等邊三角形的個(gè)數(shù)之和為個(gè).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com