【題目】下列各組數(shù)中,可以構(gòu)成直角三角形的是(  )

A. 2,3,5 B. 3,4,5 C. 5,6,7 D. 6,7,8

【答案】B

【解析】

兩邊的平方和等于第三邊平方的三角形是直角三角形,根據(jù)此可找到答案.

解:∵32+42=25=52,

可構(gòu)成直角三角形的是3、4、5.

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一平面內(nèi),兩條直線(xiàn)的位置關(guān)系是(

A.平行和垂直B.平行和相交C.垂直和相交D.平行、垂直和相交

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)P為直線(xiàn)l外一點(diǎn),A,B,C為直線(xiàn)l上三點(diǎn),且PA=8cm,PB=7cm,PC=5cm,則點(diǎn)P到直線(xiàn)l的距離為( 。

A.5cmB.7cmC.8cmD.不大于5cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一頂點(diǎn)重合的兩個(gè)大小完全相同的邊長(zhǎng)為3的正方形ABCD和正方形AB′C′D′,如圖所示,∠DAD′=45°,邊BC與D′C′交于點(diǎn)O,則四邊形ABOD′的周長(zhǎng)是( 。

A. 6 B. 6 C. 3 D. 3+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列計(jì)算正確的是(
A.4x2+2x2=6x4
B.(x﹣y)2=x2﹣y2
C.(x32=x5
D.x2x2=x4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ab1,ab=3,則(a-1)(b+1)____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知不等式

(1)求該不等式的解集;

(2)該不等式的所有負(fù)整數(shù)解的和是關(guān)于y的方程2y-3a=6的解,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為弘揚(yáng)中華民族傳統(tǒng)美德,增強(qiáng)少先隊(duì)員的服務(wù)意識(shí)和奉獻(xiàn)意識(shí),2017年3月5日全國(guó)第54個(gè)“學(xué)雷鋒日”暨第18個(gè)“中國(guó)青年志愿者服務(wù)日”之際,某校倡導(dǎo)學(xué)生們參加“學(xué)雷鋒”義務(wù)勞動(dòng). 王校長(zhǎng)為了解同學(xué)們的勞動(dòng)情況(全體學(xué)生的勞動(dòng)時(shí)間都大于0.5小時(shí)),隨機(jī)調(diào)查了若干名學(xué)生某天內(nèi)義務(wù)勞動(dòng)的時(shí)間,并根據(jù)調(diào)查的數(shù)據(jù)繪制成如圖1所示的不完整的頻數(shù)分布直方圖(注:0.5~1小時(shí)不包括0.5小時(shí),包括1小時(shí))和如圖2所示的扇形統(tǒng)計(jì)圖,已知?jiǎng)趧?dòng)時(shí)間在0.5~1小時(shí)的學(xué)生人數(shù)比勞動(dòng)時(shí)間在1~1.5小時(shí)的學(xué)生人數(shù)少2.

圖1 圖2

(1)求頻數(shù)分布直方圖中a,b的值;

(2)補(bǔ)全頻數(shù)分布直方圖;

(3)求勞動(dòng)時(shí)間在2~2.5小時(shí)內(nèi)的學(xué)生人數(shù)所對(duì)的扇形的圓心角的度數(shù);

(4)若該校有1000名學(xué)生,義務(wù)勞動(dòng)2小時(shí)以上的學(xué)生會(huì)獲得學(xué)校的獎(jiǎng)品,請(qǐng)你估計(jì)該校

有多少名學(xué)生獲得了獎(jiǎng)品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知⊙O中,弦AB=AC,點(diǎn)P是∠BAC所對(duì)弧上一動(dòng)點(diǎn),連接PA,PB.

(1)如圖①,把△ABP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到△ACQ,連接PC,求證:∠ACP+∠ACQ=180°;

(2)如圖②,若∠BAC=60°,試探究PA、PB、PC之間的關(guān)系.

(3)若∠BAC=120°時(shí),(2)中的結(jié)論是否成立?若是,請(qǐng)證明;若不是,請(qǐng)直接寫(xiě)出它們之間的數(shù)量關(guān)系,不需證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案