【題目】如圖,在兩建筑物之間有一旗桿,高15米,從A點(diǎn)經(jīng)過(guò)旗桿頂點(diǎn)恰好看到矮建筑物的墻角C點(diǎn),且俯角α為60°,又從A點(diǎn)測(cè)得D點(diǎn)的俯角β為30°,若旗桿底點(diǎn)G為BC的中點(diǎn),則矮建筑物的高CD為( )
A.20米
B.10 米
C.15 米
D.5 米
【答案】A
【解析】解:∵點(diǎn)G是BC中點(diǎn),EG∥AB,
∴EG是△ABC的中位線(xiàn),
∴AB=2EG=30米,
在Rt△ABC中,∠CAB=30°,
則BC=ABtan∠BAC=30× =10 米.
如圖,過(guò)點(diǎn)D作DF⊥AF于點(diǎn)F.
在Rt△AFD中,AF=BC=10 米,
則FD=AFtanβ=10 × =10米,
綜上可得:CD=AB﹣FD=30﹣10=20米.
故選:A.
【考點(diǎn)精析】掌握關(guān)于仰角俯角問(wèn)題是解答本題的根本,需要知道仰角:視線(xiàn)在水平線(xiàn)上方的角;俯角:視線(xiàn)在水平線(xiàn)下方的角.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2013年4月20日,我省蘆山縣發(fā)生7.0級(jí)強(qiáng)烈地震,造成大量的房屋損毀,急需大量帳篷.某企業(yè)接到任務(wù),須在規(guī)定時(shí)間內(nèi)生產(chǎn)一批帳篷.如果按原來(lái)的生產(chǎn)速度,每天生產(chǎn)120頂帳篷,那么在規(guī)定時(shí)間內(nèi)只能完成任務(wù)的90%.為按時(shí)完成任務(wù),該企業(yè)所有人員都支援到生產(chǎn)第一線(xiàn),這樣,每天能生產(chǎn)160頂帳篷,剛好提前一天完成任務(wù).問(wèn)規(guī)定時(shí)間是多少天?生產(chǎn)任務(wù)是多少頂帳篷?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為圓心的圓過(guò)點(diǎn)A(13,0),直線(xiàn)y=kx﹣3k+4與⊙O交于B、C兩點(diǎn),則弦BC的長(zhǎng)的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某校綜合實(shí)踐活動(dòng)小組的同學(xué)欲測(cè)量公園內(nèi)一棵樹(shù)DE的高度,他們?cè)谶@棵樹(shù)的正前方一座樓亭前的臺(tái)階上A點(diǎn)處測(cè)得樹(shù)頂端D的仰角為30°,朝著這棵樹(shù)的方向走到臺(tái)階下的點(diǎn)C處,測(cè)得樹(shù)頂端D的仰角為60°.已知A點(diǎn)的高度AB為3米,臺(tái)階AC的坡度為1: (即AB:BC=1: ),且B、C、E三點(diǎn)在同一條直線(xiàn)上.請(qǐng)根據(jù)以上條件求出樹(shù)DE的高度(側(cè)傾器的高度忽略不計(jì)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)“▲”、“●”、“■”分別表示三種不同的物體,現(xiàn)用天平秤兩次,情況如圖所示,那么▲、●、■這三種物體按質(zhì)量從大到小排列應(yīng)為( )
A.■、●、▲
B.▲、■、●
C.■、▲、●
D.●、▲、■
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖①,BP、CP分別平分△ABC的外角∠CBD、∠BCE,BQ、CQ分別平分∠PBC、∠PCB,BM、CN分別是∠PBD、∠PCE的角平分線(xiàn).
(1)當(dāng)∠BAC=40°時(shí),∠BPC= ,∠BQC= ;
(2)當(dāng)BM∥CN時(shí),求∠BAC的度數(shù);
(3)如圖②,當(dāng)∠BAC=120°時(shí),BM、CN所在直線(xiàn)交于點(diǎn)O,直接寫(xiě)出∠BOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C是半圓O上的一點(diǎn),AC平分∠DAB,AD⊥CD,垂足為D,AD交⊙O于E,連接CE.
(1)判斷CD與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若E是 的中點(diǎn),⊙O的半徑為1,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于t的不等式組 ,恰有三個(gè)整數(shù)解,則關(guān)于x的一次函數(shù) 的圖象與反比例函數(shù) 的圖象的公共點(diǎn)的個(gè)數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道:任意一個(gè)有理數(shù)與無(wú)理數(shù)的和為無(wú)理數(shù),任意一個(gè)不為零的有理數(shù)與一個(gè)無(wú)理數(shù)的積為無(wú)理數(shù),而零與無(wú)理數(shù)的積為零.由此可得:如果ax+b=0,其中a、b為有理數(shù),x為無(wú)理數(shù),那么a=0且b=0.
運(yùn)用上述知識(shí),解決下列問(wèn)題:
(1)如果(a-2)+b+3=0,其中a、b為有理數(shù),那么a= ,b= ;
(2)如果(2+)a-(1-)b=5,其中a、b為有理數(shù),求a+2b的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com